Open Access System for Information Sharing

Login Library

 

Article
Cited 32 time in webofscience Cited 34 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorRyu, J-
dc.contributor.authorChoe, SB-
dc.contributor.authorLee, HW-
dc.date.accessioned2015-06-25T03:08:01Z-
dc.date.available2015-06-25T03:08:01Z-
dc.date.created2014-03-05-
dc.date.issued2011-08-12-
dc.identifier.issn1098-0121-
dc.identifier.other2015-OAK-0000024252en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12257-
dc.description.abstractThe domain-wall motion in a magnetic nanowire is examined theoretically in the regime where the domain-wall driving force is weak and its competition against disorders is assisted by thermal agitations. Two types of driving forces are considered; magnetic field and current. While the field induces the domain-wall motion through the Zeeman energy, the current induces the domain-wall motion by generating the spin transfer torque, of which effects in this regime remain controversial. The spin transfer torque has two mutually orthogonal vector components, the adiabatic spin transfer torque and the nonadiabatic spin transfer torque. We investigate separate effects of the two components on the domain-wall depinning rate in one-dimensional systems and on the domai-wall creep velocity in two-dimensional systems, both below the Walker breakdown threshold. In addition to the leading-order contribution coming from the field and/or the nonadiabatic spin transfer torque, we find that the adiabatic spin transfer torque generates corrections, which can be of relevance for an unambiguous analysis of experimental results. For instance, it is demonstrated that the neglect of the corrections in experimental analysis may lead to an incorrect evaluation of the nonadiabaticity parameter. Effects of the Rashba spin-orbit coupling on the domain-wall motion are also analyzed.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.relation.isPartOfPHYSICAL REVIEW B-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleMagnetic domain-wall motion in a nanowire: Depinning and creep-
dc.typeArticle-
dc.contributor.college물리학과en_US
dc.identifier.doi10.1103/PHYSREVB.84.075469-
dc.author.googleRyu, Jen_US
dc.author.googleChoe, SBen_US
dc.author.googleLee, HWen_US
dc.relation.volume84en_US
dc.relation.issue7en_US
dc.relation.startpage75469en_US
dc.contributor.id10084423en_US
dc.relation.journalPHYSICAL REVIEW Ben_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICAL REVIEW B, v.84, no.7, pp.75469-
dc.identifier.wosid000293830600025-
dc.date.tcdate2019-01-01-
dc.citation.number7-
dc.citation.startPage75469-
dc.citation.titlePHYSICAL REVIEW B-
dc.citation.volume84-
dc.contributor.affiliatedAuthorLee, HW-
dc.identifier.scopusid2-s2.0-80052415360-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc24-
dc.description.scptc24*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusSURFACE-ROUGHNESS-
dc.subject.keywordPlusCO FILMS-
dc.subject.keywordPlusUNIVERSALITY-
dc.subject.keywordPlusINTERFACE-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse