Open Access System for Information Sharing

Login Library

 

Article
Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, Su Cheong-
dc.contributor.authorKim, Moo Hwan-
dc.contributor.authorWongwises, Somchai-
dc.contributor.authorYu, Dong In-
dc.contributor.authorAhn, Ho Seon-
dc.date.accessioned2023-07-11T04:42:36Z-
dc.date.available2023-07-11T04:42:36Z-
dc.date.created2021-12-23-
dc.date.issued2022-01-
dc.identifier.issn1359-4311-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/117965-
dc.description.abstractGenerally, three classified hydrodynamic behaviors of impinging water drops involving corresponding boiling heat transfer regimes have been reported under low Weber number conditions (We < 20): contact boiling (nucleate boiling), transition rebound (transition boiling), and Leidenfrost rebound (film boiling). In previous studies of drop impingement on a structured surface, an explosive lift-off regime, which is characterized by lift-off from the surface within 1 ms without any disturbance at the top side of the drop, was reported, and the triggering hypothesis of explosive lift-off suggested had no quantitative evidence. In this study, the outcomes of water drop impingement onto a heated surface with micropillar arrays were investigated using a high-speed imaging system, for wall temperatures between 150 and 380 degrees C and a Weber number of approximately 4. Pool boiling experiments were conducted to validate the triggering hypothesis of explosive lift-off, as suggested by previous researchers. Based on the experimental results, the triggering mechanism of the explosive lift-off is discussed.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.relation.isPartOfApplied Thermal Engineering-
dc.titleExplosive lift-off triggering mechanism on a surface with micropillar arrays: Liquid-vapor interface behavior between micropillars during drop impingement-
dc.typeArticle-
dc.identifier.doi10.1016/j.applthermaleng.2021.117739-
dc.type.rimsART-
dc.identifier.bibliographicCitationApplied Thermal Engineering, v.201-
dc.identifier.wosid000718112100007-
dc.citation.titleApplied Thermal Engineering-
dc.citation.volume201-
dc.contributor.affiliatedAuthorKim, Moo Hwan-
dc.identifier.scopusid2-s2.0-85118512040-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusBOILING HEAT-TRANSFER-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusFLUX-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordAuthorDrop impingement-
dc.subject.keywordAuthorExplosive lift-off-
dc.subject.keywordAuthorLeidenfrost-
dc.subject.keywordAuthorPool boiling-
dc.subject.keywordAuthorMicropillar arrays-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse