Open Access System for Information Sharing

Login Library

 

Article
Cited 12 time in webofscience Cited 13 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLuu, Norman S.-
dc.contributor.authorLim, Jin-Myoung-
dc.contributor.authorTorres-Castanedo, Carlos G.-
dc.contributor.authorPark, Kyu-Young-
dc.contributor.authorMoazzen, Elahe-
dc.contributor.authorHe, Kun-
dc.contributor.authorMeza, Patricia E.-
dc.contributor.authorLi, Wenyun-
dc.contributor.authorDowning, Julia R.-
dc.contributor.authorHu, Xiaobing-
dc.contributor.authorDravid, Vinayak P.-
dc.contributor.authorBarnett, Scott A.-
dc.contributor.authorBedzyk, Michael J.-
dc.contributor.authorHersam, Mark C.-
dc.date.accessioned2021-12-02T08:35:31Z-
dc.date.available2021-12-02T08:35:31Z-
dc.date.created2021-11-30-
dc.date.issued2021-09-28-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107714-
dc.description.abstractLithium nickel manganese cobalt oxides (NMCs) are promising cathode materials for high-performance lithium-ion batteries. Although these materials are commonly cycled within mild voltage windows (up to 4.3 V vs Li/Li+), operation at high voltages (>4.7 V vs Li/Li+) to access additional capacity is generally avoided due to severe interfacial and chemomechanical degradation. At these high potentials, NMC degradation is caused by exacerbated electrolyte decomposition reactions and non-uniform buildup of chemomechanical strains that result in particle fracture. By applying a conformal graphene coating on the surface of NMC primary particles, we find significant enhancements in the high-voltage cycle life and Coulombic efficiency upon electrochemical cycling. Postmortem X-ray diffraction, X-ray photoelectron spectroscopy, and electron microscopy suggest that the graphene coating mitigates electrolyte decomposition reactions and reduces particle fracture and electrochemical creep. We propose a relationship between the spatial uniformity of lithium flux and particle-level mechanical degradation and show that a conformal graphene coating is well-suited to address these issues. Overall, these results delineate a pathway for rationally mitigating high-voltage chemomechanical degradation of nickel-rich cathodes that can be applied to existing and emerging classes of battery materials. ©-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfAcs Applied Energy Materials-
dc.titleElucidating and Mitigating High-Voltage Interfacial Chemomechanical Degradation of Nickel-Rich Lithium-Ion Battery Cathodes via Conformal Graphene Coating-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.1c01995-
dc.type.rimsART-
dc.identifier.bibliographicCitationAcs Applied Energy Materials, v.4, no.10, pp.11069 - 11079-
dc.identifier.wosid000711236300068-
dc.citation.endPage11079-
dc.citation.number10-
dc.citation.startPage11069-
dc.citation.titleAcs Applied Energy Materials-
dc.citation.volume4-
dc.contributor.affiliatedAuthorPark, Kyu-Young-
dc.identifier.scopusid2-s2.0-85116798784-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusCHARGE HETEROGENEITY-
dc.subject.keywordPlusCYCLING PERFORMANCE-
dc.subject.keywordPlusSURFACE-CHEMISTRY-
dc.subject.keywordPlusCARBON-BLACKS-
dc.subject.keywordPlusLINI0.5MN0.3CO0.2O2-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusLICOO2-
dc.subject.keywordPlusLINI0.5CO0.2MN0.3O2-
dc.subject.keywordAuthorbattery cathode-
dc.subject.keywordAuthorlithium nickel manganese cobalt oxide-
dc.subject.keywordAuthorelectrochemical creep-
dc.subject.keywordAuthorcycle life-
dc.subject.keywordAuthorhigh voltage-
dc.subject.keywordAuthorchemomechanical degradation-
dc.subject.keywordAuthorCoulombic efficiency-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse