Open Access System for Information Sharing

Login Library

 

Article
Cited 16 time in webofscience Cited 18 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorThiyagarajan, Kaliannan-
dc.contributor.authorSong, Woo-Jin-
dc.contributor.authorPark, Hyeji-
dc.contributor.authorSelvaraj, Veerapandian-
dc.contributor.authorMoon, Sungmin-
dc.contributor.authorOh, Joosung-
dc.contributor.authorKwak, Myung-Jun-
dc.contributor.authorPark, Gyeongbae-
dc.contributor.authorKong, Minsik-
dc.contributor.authorPal, Monalisa-
dc.contributor.authorKwak, Junghyeok-
dc.contributor.authorGiri, Anupam-
dc.contributor.authorJang, Ji-Hyun-
dc.contributor.authorPark, Soojin-
dc.contributor.authorJeong, Unyong-
dc.date.accessioned2021-09-25T09:50:05Z-
dc.date.available2021-09-25T09:50:05Z-
dc.date.created2021-06-22-
dc.date.issued2021-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107154-
dc.description.abstractFull advantage of stretchable electronic devices can be taken when utilizing an intrinsically stretchable power source. High-performance stretchable supercapacitors with a simple structure and solid-state operation are good power sources for stretchable electronics. This study suggests a new type of intrinsically stretchable, printable, electroactive ink consisting of 1T-MoS2 and a fluoroelastomer (FE). The active material (1T-MoS2/FE) is made by fluorinating the metallic-phase MoS2 (1T-MoS2) nanosheets with the FE under high-power ultrasonication. The MoS2 in the 1T-MoS2/FE has unconventional crystal structures in which the stable cubic (1T) and distorted 2H structures were mixed. The printed line of the 1T-MoS2/FE on the porous stretchable Au collector electrodes is intrinsically stretchable at more than �� = 50% and has good specific capacitance (28 mF cm-2 at 0.2 mA cm-2) and energy density (3.15 mWh cm-3). The in-plane all-solid-state stretchable supercapacitor is stretchable at �� = 40% and retains its relative capacity (C/Co) by 80%. This printable device platform potentially opens up the in-plane fabrication of stretchable micro-supercapacitor devices for wearable electronic applications.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.titleElectroactive 1T-MoS2 Fluoroelastomer Ink for Intrinsically Stretchable Solid-State In-Plane Supercapacitors-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.1c01463-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.13, no.23, pp.26870 - 26878-
dc.identifier.wosid000664289800020-
dc.citation.endPage26878-
dc.citation.number23-
dc.citation.startPage26870-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume13-
dc.contributor.affiliatedAuthorThiyagarajan, Kaliannan-
dc.contributor.affiliatedAuthorPark, Hyeji-
dc.contributor.affiliatedAuthorSelvaraj, Veerapandian-
dc.contributor.affiliatedAuthorKong, Minsik-
dc.contributor.affiliatedAuthorGiri, Anupam-
dc.contributor.affiliatedAuthorPark, Soojin-
dc.contributor.affiliatedAuthorJeong, Unyong-
dc.identifier.scopusid2-s2.0-85108385978-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusRECENT PROGRESS-
dc.subject.keywordPlusULTRASONIC DEGRADATION-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordAuthorporous stretchable electrode-
dc.subject.keywordAuthorstretchable supercapacitor-
dc.subject.keywordAuthorMetallic-phase MoS2-
dc.subject.keywordAuthorpolymer composite ink-
dc.subject.keywordAuthorintrinsic stretchability-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

정운룡JEONG, UNYONG
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse