Open Access System for Information Sharing

Login Library


Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

소듐냉각 고속로에서의 소듐-CO2 반응에 대한 연구

소듐냉각 고속로에서의 소듐-CO2 반응에 대한 연구
Date Issued
브레이튼 사이클이 적용된 소듐냉각 고속로는 기존의 랭킨 사이클에서 발생가능한 소듐-물 반응을 원천적으로 배제할 수 있다는 큰 장점으로 많은 관심을 받고 있다. 하지만 여전히 2차측 열교환기의 전열관을 중심으로 고압의 CO2와 소듐 사이에 200bar에 달하는 압력경계가 존재하며, 압력경계가 파손되는 잠재적인 사고상황에서 소듐-CO2 화학 반응에 대한 분석이 필요하다. 따라서 본 연구에서는 소듐-CO2 화학반응 실험을 위해 구축된 SOCRATES 장치를 통하여 표면반응 실험을 수행하였다. 반응 온도는 소듐냉각 고속로의 운전온도를 고려하여 350~500 °C로 설명하였으며, 미세누설 상황을 고려하여 CO2 유량을 ~15 SLPM 까지 다양한 표면적에서 반응실험을 수행하였다. 본 연구에서는 온도 뿐만 아니라 CO2 유량도 반응에 관여함을 확인하였다. 또한, 반응온도 400 °C 근처에서 반응 메커니즘이 변하는 문턱온도가 존재함을 확인하고 수정된 2영역 반응모델을 제안하였다. 추가적으로 반응 계면에 형성된 고체반응 생성물을 FTIR 분광계를 이용하여 분석하였으며, 주 반응 생성물이 탄산나트륨임을 확인하였다.
The supercritical CO2 Brayton cycle option for energy conversion in a sodium-cooled fast reactor has recently been focused on as it could eliminate the potential sodium water reaction (SWR) in a traditional Rankine cycle power conversion system. Nevertheless, there could be a pressure boundary at 200 bar between high-pressure CO2 gas and liquid sodium at atmospheric pressure around heat transfer tubes. Thus, it should be considered that potential pressure boundary failure accident and consequential Na-CO2 chemical reaction. For this reason, an analysis of reaction mechanism is essential to cope with a potential accident situation. In the present study, the fundamental surface reaction test for a Na-CO2 interaction was performed and its reaction mechanism was investigated using the SOCRATES facility which is integrated both glove box and reactor. The reaction test was carried out for sodium temperature ranging from 350 °C to 500 °C. CO2 flow rate (~15 SLPM) and various size (~12 cm2) of sodium surface are considered to evaluate the micro-leak situation. The results indicate that chemical reaction rate depends highly on the reaction temperature and influenced by velocity of CO2 flowing over the gas-liquid reacting interface explored in this study. Based on the temperature and chemical reaction rate, modified two-zone reaction model with a threshold temperature of 400 °C was proposed. The kinetic parameters for each reaction zone were experimentally obtained and the corresponding model parameters were identified. Additionally, it was found that major component of solid reaction product was sodium carbonate (Na2CO3) by using the FTIR spectroscopic analysis and
Article Type
Files in This Item:
There are no files associated with this item.


  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads