Open Access System for Information Sharing

Login Library

 

Article
Cited 16 time in webofscience Cited 18 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJeong, Y.-
dc.contributor.authorBarlat, F.-
dc.contributor.authorTom?, C.N.-
dc.contributor.authorWen, W.-
dc.date.available2018-06-15T05:35:58Z-
dc.date.created2017-12-21-
dc.date.issued2017-06-
dc.identifier.issn0749-6419-
dc.identifier.urihttp://oasis.postech.ac.kr/handle/2014.oak/50642-
dc.description.abstractConstitutive models developed for simulating plastic response upon strain path changes are combined: 1) a macro-mechanical model based on anisotropic yield function, associated flow rule and distortional hardening using Homogeneous Anisotropic Hardening (HAH) approach; 2) a micro-mechanical model using self-consistent crystal plasticity in conjunction with crystallographic dislocation-density based hardening. The micro-mechanical model is employed to probe the yield surface in order to gain the insight required to construct empirical rules appropriate for the macro-mechanical model. Simulation results of the micro-mechanical model under various loading conditions involving strain path changes and different crystallographic textures are presented. The trends captured in the yield surface evolution predicted by the micro-mechanical model were used to validate and improve the empirical rules used in the HAH model. ? 2016 Elsevier Ltd.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleA comparative study between micro- and macro-mechanical constitutive models developed for complex loading scenarios-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF PLASTICITY, v.93, pp.212 - 228-
dc.identifier.wosid000402213200011-
dc.date.tcdate2019-02-01-
dc.citation.endPage228-
dc.citation.startPage212-
dc.citation.titleINTERNATIONAL JOURNAL OF PLASTICITY-
dc.citation.volume93-
dc.contributor.affiliatedAuthorBarlat, F.-
dc.identifier.scopusid2-s2.0-84994142683-
dc.description.journalClass1-
dc.description.wostc4-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy materials Technology
Read more

Views & Downloads

Browse