Open Access System for Information Sharing

Login Library

 

Article
Cited 33 time in webofscience Cited 37 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorPark, Sang Min-
dc.contributor.authorKim, Hye Mi-
dc.contributor.authorSong, Kwang Hoon-
dc.contributor.authorEom, Seong Su-
dc.contributor.authorPark, Hyoung Jun-
dc.contributor.authorDoh, Jun Sang-
dc.contributor.authorKim, Dong Sung-
dc.date.accessioned2018-06-07T01:01:00Z-
dc.date.available2018-06-07T01:01:00Z-
dc.date.created2018-04-19-
dc.date.issued2018-07-
dc.identifier.issn0142-9612-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/50095-
dc.description.abstractLeukocyte infiltration plays critical roles in tissue inflammation for pathogen clearance and tumor eradication. This process is regulated by complex microenvironments in blood vessels, including inflamed endothelium, blood flow, and perivascular components. The role of perivascular components in leukocyte infiltration has not been systematically investigated until recently mostly due to lack of technology. In this work, we developed a three-dimensional multi-layered blood vessel/tissue model with a nanofiber membrane, enabling real-time visualization of dynamic leukocyte infiltration and subsequent interaction with perivascular macrophages. We directly fabricated a highly aligned, free-standing nanofiber membrane with an ultra-thin thickness of ∼1 μm in microfluidic systems. Coating the nanofiber membrane with matrigel showed synergetic topographical and biochemical effects on the reconstitution of a well-aligned endothelial monolayer on the membrane. Our 3D multi-layered blood vessel/tissue model will offer a powerful and versatile tool for investigating the mechanism of leukocyte tissue infiltration and subsequent immune responses.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.relation.isPartOfBIOMATERIALS-
dc.titleUltra-thin, aligned, free-standing nanofiber membranes to recapitulate multi-layered blood vessel/tissue interface for leukocyte infiltration study-
dc.typeArticle-
dc.identifier.doi10.1016/j.biomaterials.2018.03.053-
dc.type.rimsART-
dc.identifier.bibliographicCitationBIOMATERIALS, v.169, pp.22 - 34-
dc.identifier.wosid000432610600003-
dc.citation.endPage34-
dc.citation.startPage22-
dc.citation.titleBIOMATERIALS-
dc.citation.volume169-
dc.contributor.affiliatedAuthorPark, Sang Min-
dc.contributor.affiliatedAuthorKim, Hye Mi-
dc.contributor.affiliatedAuthorEom, Seong Su-
dc.contributor.affiliatedAuthorPark, Hyoung Jun-
dc.contributor.affiliatedAuthorDoh, Jun Sang-
dc.contributor.affiliatedAuthorKim, Dong Sung-
dc.identifier.scopusid2-s2.0-85047423499-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeARTICLE-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

도준상DOH, JUN SANG
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse