Open Access System for Information Sharing

Login Library

 

Article
Cited 23 time in webofscience Cited 23 time in scopus
Metadata Downloads

Photoelectrochemical hydrogen production on silicon microwire arrays overlaid with ultrathin titanium nitride SCIE SCOPUS

Title
Photoelectrochemical hydrogen production on silicon microwire arrays overlaid with ultrathin titanium nitride
Authors
Sung Kyu ChoiWeon-Sik ChaeBokyung SongChang-Hee ChoJina ChoiDong Suk HanChoi, WHyunwoong Park
Date Issued
2016-06
Publisher
ROYAL SOC CHEMISTRY
Abstract
p-Si wire arrays overlaid with an ultrathin titanium nitride (TiN) film are developed and demonstrated to be an efficient and robust photocathode for hydrogen production. Arrays of vertically aligned 20 mu m long p-Si microwires of varying diameters (1.6-14.6 mm) are fabricated via a photolithographic technique, and then the wires are coated with a TiN nanolayer 2-20 nm thick by low-temperature plasma-enhanced atomic layer deposition. The optimized heterojunction consisting of 1.6 mu m-thick wires covered by 10 nm thick TiN exhibits significantly improved performance for hydrogen evolution reaction under simulated sunlight (AM 1.5G, 100 mW cm(-2)). It displays a photocurrent onset potential of similar to+0.4 V vs. reversible hydrogen electrode (RHE), and a faradaic efficiency of nearly 100% at 0 V vs. RHE over 20 h of reaction. Time-resolved photoluminescence decay reveals that the lifetime (tau) of the photogenerated charge carriers in the optimized wire/TiN heterojunction is similar to 60% shorter than those using thicker wires, suggesting significantly faster charge transfer. Such remarkable performance is attributed to enhanced transfer of the minority carriers in the radial direction of the wires. TiN performs the triple roles of antireflection, protection of the Si surface, and electrocatalysis of hydrogen production. Finite-difference time-domain simulation reveals a significant increase in the absorptance of wire arrays with TiN film, and that long wavelength photons are more effectively absorbed by the wire/TiN arrays.
URI
https://oasis.postech.ac.kr/handle/2014.oak/36566
DOI
10.1039/C6TA05200B
ISSN
2050-7488
Article Type
Article
Citation
Journal of Materials Chemistry A, vol. 4, no. 36, page. 14008 - 14016, 2016-06
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

최원용CHOI, WONYONG
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse