Open Access System for Information Sharing

Login Library

 

Article
Cited 31 time in webofscience Cited 31 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLee, MG-
dc.contributor.authorLee, JW-
dc.contributor.authorGracio, JJ-
dc.contributor.authorVincze, G-
dc.contributor.authorRauch, EF-
dc.contributor.authorBarlat, F-
dc.date.accessioned2016-04-01T08:10:52Z-
dc.date.available2016-04-01T08:10:52Z-
dc.date.created2013-08-05-
dc.date.issued2013-11-
dc.identifier.issn0927-0256-
dc.identifier.other2013-OAK-0000027995-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/27405-
dc.description.abstractThe plastic flow behaviors under monotonic and forward-reverse loading were measured and modeled using a simple dislocation density-based model coupled with the homogeneous yield function anisotropic hardening (HAH) approach. The former model captures the effect of dislocation annihilation due to load reversal and the storage of newly generated dislocations that, overall, results in the stagnation of the strain hardening rate. The latter model reproduces the mechanical response of the Bauschinger effect and permanent softening phenomenon. After implementing the constitutive model into a finite element software, a detailed parametric study was performed to clarify the role of each constitutive parameter. In addition, this model was applied for the prediction of the flow curves of three different steel sheet samples under forward-reverse simple shear deformation. It was shown that this approach reasonably well reproduces the complex mechanical behavior of the steel samples. Finally, this physically based constitutive model was used to predict the springback of a realistic part after forming in order to prove its accuracy, robustness and efficiency as compared with another well accepted phenomenological isotropic-kinematic hardening model. (C) 2013 Elsevier B. V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfCOMPUTATIONAL MATERIALS SCIENCE-
dc.subjectDislocation density-
dc.subjectAnisotropy-
dc.subjectBauschinger effect-
dc.subjectStrain hardening stagnation-
dc.subjectConstitutive modeling-
dc.subjectDUAL-PHASE STEELS-
dc.subjectPLASTIC BEHAVIOR-
dc.subjectSTRAIN REVERSAL-
dc.subjectDEFORMATION-
dc.subjectALUMINUM-
dc.subjectMETALS-
dc.subjectSHEETS-
dc.subjectGRAIN-
dc.titleA dislocation-based hardening model incorporated into an anisotropic hardening approach-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1016/J.COMMATSCI.2013.05.056-
dc.author.googleLee M.G., Lee J.W., Gracio J.J., Vincze G., Rauch E.F., Barlat F.-
dc.relation.volume79-
dc.relation.startpage570-
dc.relation.lastpage583-
dc.contributor.id10118042-
dc.relation.journalCOMPUTATIONAL MATERIALS SCIENCE-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationCOMPUTATIONAL MATERIALS SCIENCE, v.79, pp.570 - 583-
dc.identifier.wosid000324471100074-
dc.date.tcdate2019-02-01-
dc.citation.endPage583-
dc.citation.startPage570-
dc.citation.titleCOMPUTATIONAL MATERIALS SCIENCE-
dc.citation.volume79-
dc.contributor.affiliatedAuthorLee, MG-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-84881287902-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc19-
dc.description.scptc16*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusDUAL-PHASE STEELS-
dc.subject.keywordPlusPLASTIC BEHAVIOR-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusMETALS-
dc.subject.keywordPlusREVERSAL-
dc.subject.keywordPlusSHEETS-
dc.subject.keywordPlusGRAIN-
dc.subject.keywordAuthorDislocation density-
dc.subject.keywordAuthorAnisotropy-
dc.subject.keywordAuthorBauschinger effect-
dc.subject.keywordAuthorStrain hardening stagnation-
dc.subject.keywordAuthorConstitutive modeling-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse