Open Access System for Information Sharing

Login Library

 

Article
Cited 97 time in webofscience Cited 106 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorReddy, NS-
dc.contributor.authorLee, YH-
dc.contributor.authorPark, CH-
dc.contributor.authorLee, CS-
dc.date.accessioned2016-04-01T01:12:10Z-
dc.date.available2016-04-01T01:12:10Z-
dc.date.created2009-04-08-
dc.date.issued2008-09-25-
dc.identifier.issn0921-5093-
dc.identifier.other2008-OAK-0000008076-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/22545-
dc.description.abstractFlow stress during hot deformation depends mainly on the strain, strain rate and temperature, and shows a complex and nonlinear relationship with them. A number of semi-empirical models were reported by others to predict the flow stress during hot deformation. This work attempts to develop a back-propagation neural network model to predict the flow stress of Ti-6Al-4V alloy for any given processing conditions. The network was successfully trained across different phase regimes (alpha + beta to beta phase) and various deformation domains. This model can predict the mean flow stress within an average error of similar to 5.6% from the experimental values, using strain, strain rate and temperature as inputs. This model seems to have an edge over existing constitutive model, like hyperbolic sine equation, and has a great potential to be employed in industries. (C) 2008 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.subjecthot deformation-
dc.subjectneural networks-
dc.subjecthyperbolic sine function-
dc.subjectflow stress-
dc.subjectHOT DEFORMATION-BEHAVIOR-
dc.subjectHIGH-SPEED STEEL-
dc.subjectAUSTENITIC STEELS-
dc.subjectSTRENGTH-
dc.subjectWORKING-
dc.subjectZR-2.5NB-0.5CU-
dc.subjectTEMPERATURES-
dc.subjectMODEL-
dc.titlePrediction of flow stress in Ti-6Al-4V alloy with an equiaxed alpha plus beta microstructure by artificial neural networks-
dc.typeArticle-
dc.contributor.college신소재공학과-
dc.identifier.doi10.1016/j.msea.2008.03.030-
dc.author.googleReddy, NS-
dc.author.googleLee, YH-
dc.author.googlePark, CH-
dc.author.googleLee, CS-
dc.relation.volume492-
dc.relation.issue1-2-
dc.relation.startpage276-
dc.relation.lastpage282-
dc.contributor.id10071833-
dc.relation.journalMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.492, no.1-2, pp.276 - 282-
dc.identifier.wosid000258644500039-
dc.date.tcdate2019-01-01-
dc.citation.endPage282-
dc.citation.number1-2-
dc.citation.startPage276-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.citation.volume492-
dc.contributor.affiliatedAuthorLee, CS-
dc.identifier.scopusid2-s2.0-47249131718-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc63-
dc.type.docTypeArticle-
dc.subject.keywordPlusHOT DEFORMATION-BEHAVIOR-
dc.subject.keywordPlusHIGH-SPEED STEEL-
dc.subject.keywordPlusAUSTENITIC STEELS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusWORKING-
dc.subject.keywordPlusZR-2.5NB-0.5CU-
dc.subject.keywordPlusTEMPERATURES-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorhot deformation-
dc.subject.keywordAuthorneural networks-
dc.subject.keywordAuthorhyperbolic sine function-
dc.subject.keywordAuthorflow stress-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이종수LEE, CHONG SOO
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse