Open Access System for Information Sharing

Login Library

 

Article
Cited 23 time in webofscience Cited 25 time in scopus
Metadata Downloads

Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms SCIE SCOPUS KCI

Title
Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms
Authors
Lee, SBCho, SJKim, JALee, SYKim, SMLim, HS
Date Issued
2014-09
Publisher
KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING
Abstract
Recently, agarose-containing macroalgae have gained attention as possible renewable sources for bioethanol-production because of their high polysaccharide content. Complete hydrolysis of agarose produces two monomers, D-galactose (D-Gal) and 3,6-anhydro-L-galactose (L-AnG). However, at present, bioethanol yield from agarophyte macroalgae is low due to the inability of bioethanolproducing microorganisms to convert non-fermentable sugars, such as L-AnG, to bioethanol. Therefore, to increase the bioethanol productivity of agarophytes, it is necessary to determine how agar-degrading microorganisms metabolize L-AnG, and accordingly, construct recombinant microorganisms that can utilize both D-Gal and L-AnG. Previously, we isolated a novel microorganism belonging to a new genus, Postechiella marina M091, which hydrolyzes and metabolizes agar as the carbon and energy source. Here, we report a comparative genomic analysis of P. marina M091, Pseudoalteromonas atlantica T6c, and Streptomyces coelicolor A3(2), of the classes Flavobacteria, Gammaproteobacteria, and Actinobacteria, respectively. In this bioinformatic analysis of these agarolytic bacteria, we found candidate common genes that were believed to be involved in L-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the L-AnG cluster. The formation of two key intermediates, 2-keto-3-deoxy-L-galactonate and 2-keto-3-deoxy-D-gluconate, was also verified using enzymes that utilize these molecules as substrates. Combining bioinformatic analysis and experimental data, we showed that L-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via six enzymecatalyzed reactions in the following reaction sequence: 3,6-anhydro-L-galactose -> 3,6-anhydro-L-galactonate -> 2-keto-3-deoxy-L-galactonate -> 2,5-diketo-3-deoxy-L-galactonate -> 2-keto-3-deoxy-D-gluconate -> 2-keto-3-deoxy-6-phospho-D-gluconate -> pyruvate + D-glyceraldehyde-3- phosphate. To our knowledge, this is the first report on the metabolic pathway of L-AnG degradation.
Keywords
3,6-anhydro-L-galactose; novel metabolic pathway; agarophyte macroalgae; Postechiella marina; Pseudoalteromonas atlantica; Streptomyces coelicolor; ARCHAEON THERMOPLASMA-ACIDOPHILUM; ENTNER-DOUDOROFF PATHWAY; D-GLUCONATE-DEHYDRATASE; SULFOLOBUS-SOLFATARICUS; 2-KETO-3-DEOXY-D-GLUCONATE KINASE; PSEUDOMONAS-ATLANTICA; ENZYMATIC-HYDROLYSIS; IDENTIFICATION; FERMENTATION; PURIFICATION
URI
https://oasis.postech.ac.kr/handle/2014.oak/14038
DOI
10.1007/S12257-014-0622-3
ISSN
1226-8372
Article Type
Article
Citation
BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, vol. 19, no. 5, page. 866 - 878, 2014-09
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse