Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHa, J-
dc.contributor.authorLee, J-
dc.contributor.authorKim, JH-
dc.contributor.authorBarlat, F-
dc.contributor.authorLee, MG-
dc.date.accessioned2016-03-31T07:36:48Z-
dc.date.available2016-03-31T07:36:48Z-
dc.date.created2014-12-17-
dc.date.issued2014-06-
dc.identifier.issn1611-3683-
dc.identifier.other2014-OAK-0000031709-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/13822-
dc.description.abstractTo study the anisotropic hardening behaviors of dual-phase steels under strain path changes, a meso-scale finite element analysis was considered with the representative volume elements. For the constitutive model, the Homogeneous yield function based on Anisotropic Hardening (HAH model) was used as a phenomenological constitutive equations to describe complex anisotropic material responses in an efficient way. For the martensite inclusions, three different configurations - elongated, large, and small spherical shapes - with two different volume fractions - 10 and 30% - were assumed. In order to represent strain path changes, two loading conditions were considered: tension-compression and tension-orthogonal tension. The simulation results for tension-compression test showed that the Bauschinger ratio increases as the volume fraction of martensite inclusion increases. For the tension-orthogonal tension test, the hard martensite attenuated the transient flow stress characteristics, which were observed in the single ferritic phase. The effect of hard phase inclusion was analytically explained using a simple one-dimensional analysis based on the elastic-linear plastic theory.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfSTEEL RESEARCH INTERNATIONAL-
dc.subjectmeso-scale-
dc.subjectrepresentative volume element-
dc.subjectdual-phase steel-
dc.subjectBauschinger effect-
dc.subjectcross-hardening-
dc.subjectfinite element simulation-
dc.subjectPLASTICITY-
dc.subjectMODEL-
dc.subjectFORMABILITY-
dc.subjectPREDICTION-
dc.titleMeso-Scopic Analysis of Strain Path Change Effect on the Hardening Behavior of Dual-Phase Steel-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1002/SRIN.201300186-
dc.author.googleHa, J-
dc.author.googleLee, J-
dc.author.googleKim, JH-
dc.author.googleBarlat, F-
dc.author.googleLee, MG-
dc.relation.volume85-
dc.relation.issue6-
dc.relation.startpage1047-
dc.relation.lastpage1057-
dc.contributor.id10118042-
dc.relation.journalSTEEL RESEARCH INTERNATIONAL-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationSTEEL RESEARCH INTERNATIONAL, v.85, no.6, pp.1047 - 1057-
dc.identifier.wosid000336897900011-
dc.date.tcdate2019-01-01-
dc.citation.endPage1057-
dc.citation.number6-
dc.citation.startPage1047-
dc.citation.titleSTEEL RESEARCH INTERNATIONAL-
dc.citation.volume85-
dc.contributor.affiliatedAuthorBarlat, F-
dc.contributor.affiliatedAuthorLee, MG-
dc.identifier.scopusid2-s2.0-84901992337-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc4-
dc.description.scptc5*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusPLASTICITY-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusFORMABILITY-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordAuthormeso-scale-
dc.subject.keywordAuthorrepresentative volume element-
dc.subject.keywordAuthordual-phase steel-
dc.subject.keywordAuthorBauschinger effect-
dc.subject.keywordAuthorcross-hardening-
dc.subject.keywordAuthorfinite element simulation-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse