Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorDOHYEOK, KWAK-
dc.contributor.authorKIM, JUNG HOON-
dc.contributor.authorHagiwara, Tomomichi-
dc.date.accessioned2022-09-29T04:20:15Z-
dc.date.available2022-09-29T04:20:15Z-
dc.date.created2022-09-22-
dc.date.issued2023-01-
dc.identifier.issn0096-3003-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/113851-
dc.description.abstractThis paper develops a generalized framework for computing the -induced norm of sampled-data systems, by which we mean those consisting of a continuous-time linear time-invariant (LTI) plant and a discrete-time LTI controller, and such systems have a linear periodically time-varying (LPTV) nature. In the authors’ preceding studies, the input/output relation of sampled-data systems was described in an operator-theoretic fashion, and the kernel and input functions of an input operator and the hold function of an output operator were approximated by piecewise th order polynomials with . This leads to an approximate computation of this norm, where the computation errors were shown to converge to 0 in the order of as the approximation parameter becomes larger. Along this line, we aim at improving the computation performance compared to the preceding studies by considering the freedom in the point around which the corresponding functions are expanded to a Taylor series. This leads to a generalization of the piecewise th order approximations, and we show that taking the central point for the Taylor expansion leads to quantitatively improved accuracy than that of our preceding results that take an edge point. Finally, the effectiveness of the developed method is verified through a numerical example.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.relation.isPartOfApplied Mathematics and Computation-
dc.titleGeneralized framework for computing the L ∞ -induced norm of sampled-data systems-
dc.typeArticle-
dc.identifier.doi10.1016/j.amc.2022.127518-
dc.type.rimsART-
dc.identifier.bibliographicCitationApplied Mathematics and Computation, v.437-
dc.identifier.wosid000860536900002-
dc.citation.titleApplied Mathematics and Computation-
dc.citation.volume437-
dc.contributor.affiliatedAuthorDOHYEOK, KWAK-
dc.contributor.affiliatedAuthorKIM, JUNG HOON-
dc.identifier.scopusid2-s2.0-85137754670-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusINFINITY-INDUCED NORM-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorSampled-data systems-
dc.subject.keywordAuthorL-infinity-induced norm-
dc.subject.keywordAuthorNumerical methods-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse