Open Access System for Information Sharing

Login Library

 

Article
Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorCHAE, SUHUN-
dc.contributor.authorYONG, UIJUNG-
dc.contributor.authorPARK, WONBIN-
dc.contributor.authorCHOI, YOO MI-
dc.contributor.authorJEON, IN-HO-
dc.contributor.authorKANG, HOMAN-
dc.contributor.authorJANG, JIN AH-
dc.contributor.authorCHOI, HAK SOO-
dc.contributor.authorCHO, DONG WOO-
dc.date.accessioned2022-06-23T02:20:07Z-
dc.date.available2022-06-23T02:20:07Z-
dc.date.created2022-06-01-
dc.date.issued2023-01-
dc.identifier.issn2452-199X-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/113024-
dc.description.abstractOwing to the prevalence of rotator cuff (RC) injuries and suboptimal healing outcome, rapid and functional regeneration of the tendon–bone interface (TBI) after RC repair continues to be a major clinical challenge. Given the essential role of the RC in shoulder movement, the engineering of biomimetic multi-tissue constructs presents an opportunity for complex TBI reconstruction after RC repair. Here, we propose a gradient cell-laden multi-tissue construct combined with compositional gradient TBI-specific bioinks via 3D cell-printing technology. In vitro studies demonstrated the capability of a gradient scaffold system in zone-specific inducibility and multi-tissue formation mimicking TBI. The regenerative performance of the gradient scaffold on RC regeneration was determined using a rat RC repair model. In particular, we adopted nondestructive, consecutive, and tissue-targeted near-infrared fluorescence imaging to visualize the direct anatomical change and the intricate RC regeneration progression in real time in vivo. Furthermore, the 3D cell-printed implant promotes effective restoration of shoulder locomotion function and accelerates TBI healing in vivo. In summary, this study identifies the therapeutic contribution of cell-printed constructs towards functional RC regeneration, demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces. © 2022 The Authors-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfBioactive Materials-
dc.title3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration-
dc.typeArticle-
dc.identifier.doi10.1016/j.bioactmat.2022.05.004-
dc.type.rimsART-
dc.identifier.bibliographicCitationBioactive Materials, v.19, pp.611 - 625-
dc.identifier.wosid000800031400001-
dc.citation.endPage625-
dc.citation.startPage611-
dc.citation.titleBioactive Materials-
dc.citation.volume19-
dc.contributor.affiliatedAuthorCHAE, SUHUN-
dc.contributor.affiliatedAuthorYONG, UIJUNG-
dc.contributor.affiliatedAuthorPARK, WONBIN-
dc.contributor.affiliatedAuthorCHOI, YOO MI-
dc.contributor.affiliatedAuthorJANG, JIN AH-
dc.contributor.affiliatedAuthorCHO, DONG WOO-
dc.identifier.scopusid2-s2.0-85129720664-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusMESENCHYMAL STEM-CELLS-
dc.subject.keywordPlusNEAR-INFRARED FLUOROPHORES-
dc.subject.keywordPlusIN-VIVO DEGRADATION-
dc.subject.keywordPlusBONE-
dc.subject.keywordPlusREPAIR-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusSCAFFOLDS-
dc.subject.keywordPlusPROGENITORS-
dc.subject.keywordPlusCARTILAGE-
dc.subject.keywordPlusBLENDS-
dc.subject.keywordAuthor3D cell-printing-
dc.subject.keywordAuthorGradient tissue scaffolds-
dc.subject.keywordAuthorNear-infrared fluorophores-
dc.subject.keywordAuthorRotator cuff repair-
dc.subject.keywordAuthorTissue-specific bioink-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조동우CHO, DONG WOO
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse