Open Access System for Information Sharing

Login Library


Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKANG, DAYOON-
dc.contributor.authorJUNG, SUNGJUNE-
dc.description.abstractFine dust particles in the air travel through the airways to our bodies, damaging our respiratory system. The need for research to analyze the effects of dust particles on the respiratory system has been highlighted because such damage causes serious respiratory problems. However, most studies of dust toxicity have been conducted in two-dimensional cell culture, animal models, and epidemiological investigations. To find out how dust can cause respiratory problems, researchers should investigate using a reliable three-dimensional structural model that mimics human nature alveoli. In this study, dust particles were applied to the previously developed three-dimensional alveoli barrier created by the inkjet bioprinting process. Our state-of-the-art all-inkjet-printed alveolar barrier has been proven to contain the physiological functions of the natural human alveolar barrier. The fabricated alveolar barrier has a clearly distinct three-layer structure, maintains barrier integrity, secretes pulmonary surfactant, and expresses ion channels. As a result, we observed dramatic cell apoptosis, reduced proliferation and lung dysfunction in inkjet bioprinted alveolar barriers exposed to dust particles. Based on cell-level damage, we also observed an increase in pro-inflammatory cytokines that stimulated the secretion of matrix metalloproteinase (MMP). To analyze the effect of increasing immune response from dust, dust was treated in dose- and time-dependent manner, and alveolar tissue collapse was identified to induce structural collapse and reduced barrier robustness. We further investigated lung surfactant protein-related genes in dust-treated alveoli tissues and then estimate the harmful effects of dust on lung surfactant dysfunction. This study demonstrated the physiological effects of dust on cytotoxicity, alveolar barrier stiffness and surfactant secretion at gene expression level using inkjet bioprinted alveoli barriers. It has also been demonstrated that dust can have serious consequences that can lead to the collapse of the alveoli barrier. Using in vitro inkjet bio-printed 3D alveoli barriers, we expect this strategy to be a useful tool for identifying air pollutant exposure-related diseases.-
dc.publisherThe Organoid Society-
dc.relation.isPartOfInternational Conference of the Organoid Society 2021-
dc.titleDestruction of tissue architecture induced by dust particles in inkjet bioprinted alveolar barrier-
dc.identifier.bibliographicCitationInternational Conference of the Organoid Society 2021-
dc.citation.conferencePlace서울대학교 시흥캠퍼스-
dc.citation.titleInternational Conference of the Organoid Society 2021-
dc.contributor.affiliatedAuthorKANG, DAYOON-
dc.contributor.affiliatedAuthorJUNG, SUNGJUNE-


  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher


Dept of Materials Science & Enginrg
Read more

Views & Downloads