Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorOh, E.-
dc.contributor.authorAhn, H.-K.-
dc.date.available2020-02-27T00:50:08Z-
dc.date.created2019-03-26-
dc.date.issued2020-03-
dc.identifier.issn0179-5376-
dc.identifier.urihttp://oasis.postech.ac.kr/handle/2014.oak/101204-
dc.description.abstractGiven a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a simple n-gon, which improve the best known ones for m <= n/polylog n. Moreover, the algorithms for the geodesic nearest-point and farthest-point Voronoi diagrams are optimal for m <= n/polylog n. This partially answers a question posed by Mitchell in the Handbook of Computational Geometry.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectLINEAR-TIME ALGORITHMS-
dc.subjectSHORTEST-PATH QUERIES-
dc.subjectGEODESIC CENTER-
dc.titleVoronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.bibliographicCitationDISCRETE & COMPUTATIONAL GEOMETRY, v.63, no.2, pp.418 - 454-
dc.identifier.wosid000511936600006-
dc.citation.endPage454-
dc.citation.number2-
dc.citation.startPage418-
dc.citation.titleDISCRETE & COMPUTATIONAL GEOMETRY-
dc.citation.volume63-
dc.contributor.affiliatedAuthorAhn, H.-K.-
dc.identifier.scopusid2-s2.0-85062708699-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordAuthorGeodesic distance-
dc.subject.keywordAuthorSimple Polygons-
dc.subject.keywordAuthorVoronoi diagrams-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

안희갑AHN, HEE KAP
Grad. School of AI
Read more

Views & Downloads

Browse