Open Access System for Information Sharing

Login Library

 

Article
Cited 29 time in webofscience Cited 30 time in scopus
Metadata Downloads

Low-Temperature Solution-Processed Soluble Polyimide Gate Dielectrics: From Molecular-Level Design to Electrically Stable and Flexible Organic Transistors SCIE SCOPUS

Title
Low-Temperature Solution-Processed Soluble Polyimide Gate Dielectrics: From Molecular-Level Design to Electrically Stable and Flexible Organic Transistors
Authors
박현진Yoo S.안형주Bang J.Jeong Y.Yi M.Won J.C.Jung S.Kim Y.H.
Date Issued
2019-12
Publisher
AMER CHEMICAL SOC
Abstract
Aromatic soluble polyimides (PIs) have been widely used in organic field-effect transistors (OFETs) as gate dielectric layers due to their promising features such as outstanding chemical resistance, thermal stability, low-temperature processability, and mechanical flexibility. However, the molecular structures of soluble PIs on the electrical characteristics of OFETs are not yet fully understood. In this work, the material, dielectric, and electrical properties are evaluated to systematically investigate the chemical structure effect of aromatic dianhydride and diamine monomers on the device performance. Four soluble PIs based on 4,4'(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 5-(2,S-Dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, in which the monomeric precursors contain different backbones, side groups, and linkages, were employed to compare the chemical structure impact. The dielectric properties, which significantly affect the charge transport and crystallinity of OSC thin films, clearly depended on the soluble PI types as well as the surface energy and the thermal stability. Furthermore, the electrical characteristic measurement and parameter extraction of OFETs based on TIPS-pentacene revealed that the 6FDA-based soluble PIs, which lead to high field-effect mobility, near-zero threshold electric field, and outstanding electrical stability under bias stress, are the most promising gate dielectric candidates. Finally, low-temperature solution-processed OFETs are successfully integrated with ultrathin flexible substrates, and they exhibit no significant electrical performance loss after mechanical flexibility tests. This work presents a step forward in the development of soluble PI gate dielectrics for flexible electronic devices with high device performance.
URI
https://oasis.postech.ac.kr/handle/2014.oak/100735
DOI
10.1021/acsami.9b14041
ISSN
1944-8244
Article Type
Article
Citation
ACS Applied Materials & Interfaces, vol. 11, no. 49, page. 45949 - 45958, 2019-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse