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Abstract In bladder, loss of mammalian Sonic Hedgehog (Shh) accompanies progression to

invasive urothelial carcinoma, but the molecular mechanisms underlying this cancer-initiating event

are poorly defined. Here, we show that loss of Shh results from hypermethylation of the CpG shore

of the Shh gene, and that inhibition of DNA methylation increases Shh expression to halt the

initiation of murine urothelial carcinoma at the early stage of progression. In full-fledged tumors,

pharmacologic augmentation of Hedgehog (Hh) pathway activity impedes tumor growth, and this

cancer-restraining effect of Hh signaling is mediated by the stromal response to Shh signals, which

stimulates subtype conversion of basal to luminal-like urothelial carcinoma. Our findings thus

provide a basis to develop subtype-specific strategies for the management of human bladder

cancer.

DOI: https://doi.org/10.7554/eLife.43024.001

Introduction
Hedgehog (Hh) signaling has been recognized for its post-embryonic roles in the homeostatic main-

tenance of tissue integrity and the development of human malignancies (Ahn and Joyner, 2005;

Goodrich et al., 1997; Shin et al., 2011; Taipale and Beachy, 2001). The initial identification of Hh

pathway activity in human cancers, including basal cell carcinoma and medulloblastoma, has led to

the development of the first FDA-approved drug targeting the Hh pathway for the treatment of

human malignancy (Goodrich et al., 1997; Ruch and Kim, 2013; Sekulic et al., 2012; Tang et al.,

2012), giving rise to a new field of pharmaceutical intervention (Teglund and Toftgård, 2010).

Despite promising early preclinical studies (Olive et al., 2009; Yauch et al., 2008), recent studies

investigating pancreatic, colon or ovarian cancers have shown that Hh pathway antagonism is not

beneficial and clinical trials had to be halted in some cases because of accelerated cancer growth

(Herter-Sprie et al., 2013; Kaye et al., 2012; Ruch and Kim, 2013). Consistent with the results of

human trials, several recent studies have shown a protective role of Hh pathway activity in the pro-

gression of cancers that originate from endodermally derived tissues, including the bladder
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(Shin et al., 2014a; Shin et al., 2014b), pancreas (Lee et al., 2014; Rhim et al., 2014), colon

(Gerling et al., 2016; Lee et al., 2016), and prostate (Yang et al., 2017). This tumor-restraining

effect on a wide range of solid cancers is suggested to be exerted by the stromal response to Hh

signals elicited from epithelial cancer cells.

In the bladder, an organ of endodermal origin, the Hh response is restricted to the stroma while

Sonic hedgehog (Shh) protein is produced in basal epithelial cells. The regulatory circuit involving Hh

signaling feedback between the bladder epithelium and supporting stromal cells is required for the

proliferative response to injury during urothelial regeneration (Shin et al., 2011). Surprisingly, Shh

expression is lost during the development of invasive urothelial carcinoma, even though the tumor is

derived from Shh-expressing stem cells (Shin et al., 2014a), and genetic ablation of Hh signal

response in stromal cells accelerates tumor progression at an early stage (Shin et al., 2014b). These

studies have shown that loss of Shh expression invariably accompanies progression to invasive carci-

noma and that suppression of the Hh response in the tumor stroma significantly accelerates the initi-

ation of cancer, suggesting that Hh pathway activity protects against tumor progression at early

stages of tumor development. Although the expression of Shh is invariably lost in both murine and

human urothelial carcinoma, deep insights into the mechanisms underlying the tumor-cell-specific

regulation of Shh at the early stage of carcinogenesis remain elusive. Interestingly, recent large-scale

genomic studies in human bladder cancer (Cancer Genome Atlas Research Network, 2014a) have

revealed that mutations of genes involved in epigenetic regulation are highly enriched in invasive

urothelial carcinomas, while an extensive analysis by our group showed no mutational changes in the

SHH gene; these results raise the possibility that epigenetic activities may be responsible for the loss

of SHH expression during the initiation of urothelial carcinomas.

Technical advances in cancer genomics have permitted the subdivision of tumors into different

molecular subtypes based on gene expression and mutational profiles (Cancer Genome Atlas Net-

work and Cancer Genome Atlas, 2012; Cancer Genome Atlas Research Network, 2015). Recent

large-scale genomic studies of gene expression in human urothelial carcinoma have revealed five dis-

tinct subtypes of bladder cancer (Cancer Genome Atlas Research Network, 2014a; Choi et al.,

eLife digest In order to grow, cancer cells shut down or over-activate genes that normally

maintain a cell’s health. The Sonic Hedgehog gene – named after a Japanese cartoon character – is

associated with the cancer of several tissues, including the bladder. In 2014, researchers found that

losing the Sonic Hedgehog gene, Shh for short, is necessary for bladder cancers to become

aggressive: Shh signals prompt healthy cells near the tumor to inhibit the cancer cell growth, whilst

aggressive bladder cancer cells turn off the Shh gene. Kim et al. – including many of the researchers

involved in the 2014 work – now investigate how cancer cells switch off the Shh gene and what

effect it has on bladder cancer cells and their surrounding tissue when turned back on.

DNA sequencing bladder cancer cells derived from human patients showed that there were no

genetic deletions or mutations within the gene. However, the sequence and nearby regions of DNA

did contain methylations – a chemical modification that generally switches genes off. When mice

with early stages of bladder cancer were treated with a drug that inhibits methylation, the Shh gene

turned back on, the bladder cancers stopped growing and the tumors stayed at an early stage of

development. When the same drug was used on mice with aggressive bladder cancer, this caused

non-cancer cells in the surrounding tissue to respond to Shh and send restraining signals back to the

tumor. These signals eventually stopped cancer growth and converted the tumor into a less

aggressive type of bladder cancer. Additionally, Kim et al. saw that blocking methylation had the

same effect on human bladder cancer cells that had been transplanted into mice.

These results therefore indicate that Shh could be a new target for cancer treatments. For

instance, drugs that decrease methylation and turn on the gene could be a way of managing cancer

in patients with aggressive bladder cancers, which often show low activity of the gene. However,

future studies are needed to understand what exactly happens within cancer cells during tumor

conversion and to determine if this kind of intervention could have unintended consequences.

DOI: https://doi.org/10.7554/eLife.43024.002

Kim et al. eLife 2019;8:e43024. DOI: https://doi.org/10.7554/eLife.43024 2 of 33

Research article Cancer Biology

https://doi.org/10.7554/eLife.43024.002
https://doi.org/10.7554/eLife.43024


2014; Robertson et al., 2017), which can provide a strategic basis for developing personalized ther-

apeutic interventions for individual patients with different molecular subtypes of urothelial carcinoma

with genetic variability. An understanding of cellular and molecular dynamics, however, as cells

evolve from the pre-cancerous state to distinct molecular subtypes of invasive carcinoma during

tumor progression is required to develop more rationalized and precise treatment options for this

malignancy and will require extensive experimental testing and validation through the integrative

analysis of subtype-specific tumor initiation and progression beyond phenotypic analysis.

Interactions between epithelial cancer cells and the tumor stroma are important for the initiation

and growth of human cancers (Calon et al., 2015; Isella et al., 2015; Mao et al., 2013). Our previ-

ous work has shown that Hh signaling to the stroma induces the expression of Bone morphogenetic

proteins (BMPs), which impede bladder cancer progression. This anti-cancer effect of Hh-induced

stromal expression of BMPs is mediated by urothelial differentiation of pre-cancerous cells at the

early stage of tumor initiation (Shin et al., 2014b), indicating the importance of the stromal response

elicited by tumor cells during tumor progression. Although the protective role of Hh response in the

stroma at early stages of tumor initiation is interesting, it remains unknown whether the modulation

of the Hh signaling to the stroma, especially increased activity of the Hh pathway, in full-fledged

tumors would have a similar antitumor growth effect. This is of particular interest because most

patients seen in a clinical setting are at a late stage of disease, with full-grown tumors. In this study,

we elucidated the molecular basis for the loss of Shh during the development of bladder cancer and

showed the role of the Hh signaling response in the tumor stroma in the determination of distinct

molecular subtypes and the growth of full-fledged urothelial carcinoma.

Results

Loss of Shh expression in urothelial carcinoma results from
hypermethylation of the CpG shore of the Shh gene
Having previously established the absence of SHH expression (Shin et al., 2014b) with a low inci-

dence of genetic alterations (Figure 1—figure supplement 1A) and enrichment of mutations in

genes involved in epigenetic regulation in human invasive urothelial carcinomas (Cancer Genome

Atlas Research Network, 2014a), we compared the level of methylation in the regulatory region of

Shh between wild-type bladders and N-butyl-N-4-hydroxybutyl nitrosamine (BBN)-induced urothelial

carcinomas. By performing bisulfite sequencing analysis, we found significant increases in DNA

methylation at the CpG shore upstream of the CpG island of the Shh promoter region (Figure 1—

figure supplement 1B) in murine invasive urothelial carcinomas compared to that in wild-type blad-

ders (Figure 1A,B). Pharmacological inhibition of DNA methyltransferase (DNMT) activity with 5’-

azacitidine in BBN-induced urothelial carcinoma decreased the level of DNA methylation

(Figure 1A,B), with significant increases in the expression of Shh (Figure 1C).

In addition to primary murine tumors, we established 3D bladder tumor organoids derived from

BBN-induced urothelial carcinoma (Figure 1—figure supplement 1C). Orthotopic transplantation of

these tumor organoids revealed the histopathology of parental tumors (Figure 1—figure supple-

ment 1D), suggesting that these organoids could recapitulate the pathology of the original BBN-

induced urothelial carcinomas. To confirm that the loss of Shh expression was due to the increased

methylation of the Shh gene, murine bladder organoids were cultured and treated with 5’-azaciti-

dine, and the methylation status of the Shh regulatory region was analyzed. Consistent with the

results from BBN-induced tumors, our analyses revealed that the CpG shore of the Shh promoter

region in bladder tumor organoids were also hypermethylated, and following the treatment of 5’-

azacitidine, the level of methylation was decreased (Figure 1D,E), with significant increases in the

expression of Shh (Figure 1F). Our findings in BBN-induced urothelial carcinomas and bladder tumor

organoids strongly suggested that the loss of Shh expression in invasive urothelial carcinomas results

from the hypermethylation of the CpG shore in the Shh promoter region.
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Figure 1. Loss of Shh expression in urothelial carcinoma due to hypermethylation of the CpG shore of the Shh gene. (A, D) The methylation status of

the CpG island and CpG shore regions of the Shh gene were analyzed by bisulfite sequencing in wild-type bladder tissues, BBN-induced bladder

tumors with or without 5’-azacitidine treatment (A), and tumor organoids with or without 5’-azacitidine treatment (D). BBN-induced mouse tumors were

orthotopically transplanted and, 1 week after transplantation, the resulting animals were treated with 5’-azacitidine (1 mg per kg mouse body weight)

every other day for 2 weeks before methylation analysis. Tumor organoids were cultured using Matrigel overlay method. Three days after seeding,

Figure 1 continued on next page
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Pharmacological inhibition of DNA methylation halts the initiation of
invasive urothelial carcinoma at the premalignant stage of progression
through increased Hh signaling to the stroma
Our previous study showed that loss of the stromal Hh response triggers the initiation of invasive

urothelial carcinoma and that elevated Hh signaling inhibits the development of bladder cancer at

the early stage of progression (Shin et al., 2014a; Shin et al., 2014b). Given the experimental evi-

dence that the expression of Shh is restored under 5’-azacitidine treatment (Figure 1C,F), we rea-

soned that inhibition of DNA methylation activity would impede the development of bladder cancer,

especially at the early stage of tumor initiation. To test this possibility, we pharmacologically inhib-

ited DNA methylation with 5’-azacitidine in our BBN-induced bladder cancer model. As previously

established (Shin et al., 2014a), carcinoma in situ (CIS) became robust and widespread when mice

were exposed to BBN for 4 months. This widespread CIS contains premalignant cells with Shh

expression and represents a precursor lesion in muscle-invasive carcinoma. To investigate the effect

of DNA methylation on bladder cancer initiation, mice were treated with BBN for 4 months, followed

by the initiation of treatment with 5’-azacitidine at low dose for an additional 2 months (Tsai et al.,

2012), while continuing exposure to BBN (Figure 1G). Without 5’-azacitidine treatment, BBN expo-

sure for a total of 6 months resulted in the development of invasive carcinoma (Shin et al., 2014a;

Shin et al., 2014b), whereas no invasive carcinoma was observed in mice treated with 5’-azacitidine

during the final 2 months (Figure 1H, and Figure 1—figure supplement 1E,F), suggesting that inhi-

bition of DNA methylation impeded tumor initiation if treatment was administered prior to the for-

mation of invasive carcinoma.

To test whether the anticancer initiation effect of 5’-azacitidine was mediated by an increased

stromal Hh response induced by increased expression of Shh in cancer cells, we attempted to rescue

the tumor-restraining effect of 5’-azacitidine by genetically suppressing the Hh response in the

stroma. As previously reported, Shh expression occurs in basal stem cells in the urothelium and

responses to this signal are restricted to stromal cells (Shin et al., 2011). To genetically inactivate

the stromal Hh response, we used Col1a2CreER;Smoflox/flox or Col1a2CreER;Gli2flox/flox mice expressing

tamoxifen (TM)-inducible, stroma-specific CreER (Col1a2CreER) and carrying homozygous floxed

alleles of essential Hh pathway components (Gli2 or Smoothened). These mice were exposed to

BBN for 4 months and then injected with TM to genetically ablate Hh response in the stroma prior

Figure 1 continued

tumor organoids were treated with 5’-azacitidine (1 uM) for 4 consecutive days. Each circle represents one of 81 CpG sites, and the average degree of

methylation is indicated by the black portion of the white circle. (B, E) Results obtained from bisulfite sequencing analysis of BBN-induced bladder

tumors (B) and tumor organoids (E) are summarized. (C, F) Expression of Shh in orthotopically transplanted BBN-induced tumors treated with 5’-

azacitidine (C, 11-fold increase) and in cultured tumor organoids treated with 5’-azacitidine (F, 9-fold increase) compared to that of untreated controls.

Data are presented as the mean ± SEM, and significance was calculated with an unpaired Student’s t test (**, p<0.001). n = 3 technical replicates, and

the entire experiment was repeated three times. (G) Schematic diagrams of experimental strategies for evaluating the effect of DNMT inhibition on the

initiation of bladder cancer. Mice (14 animals in total) exposed to BBN for 4 months to induce CIS lesions were treated with the vehicle control (seven

animals) or 5’-azacitidine (seven animals) for 2 months, with continued BBN exposure to induce the development of invasive carcinoma before

histopathological analysis of the bladders. (H) Bladder tumors are shown in the upper panel. H and E staining of bladder sections (middle panels) from

mice treated with the vehicle control (left panels) or 5’-azaciditine (right panels). Magnified views (lower panels) of the boxed regions in the middle

panels, confirming the presence (vehicle) or absence (5’-azacitidine) of invasive carcinoma. Scale bars represent 150 mm. (I) Schematic diagrams of

experimental strategies for testing the association of the stromal Hh response with the anticancer effect of hypomethylation on the initiation of bladder

cancer. Col1a2CreER;Gli2flox/flox (10 animals in total) or Col1a2CreER;Smoflox/flox (10 animals in total) mice exposed to BBN for 4 months were injected with

TM (five animals on each strain) or corn oil (five animals on each strain) on 3 consecutive days. The resulting animals were subsequently exposed to BBN

for two additional months with 5’-azacitidine treatment. (J, K) Sections from the bladders of vehicle-injected (left panels) or TM-injected (right panels)

mice were analyzed by H and E staining (J, Col1a2CreER;Gli2flox/flox; K, Col1a2CreER;Smoflox/flox). Arrowheads in high-magnification images indicate

regions of squamous differentiation. Scale bars represent 300 mm. See also Figure 1—figure supplement 1 and Figure 1—source data 1.

DOI: https://doi.org/10.7554/eLife.43024.003

The following source data and figure supplement are available for figure 1:

Source data 1. Expression of Shh in BBN-induced tumors and in cultured tumor organoids treated with 5’-azacitidine.

DOI: https://doi.org/10.7554/eLife.43024.005

Figure supplement 1. Loss of Shh expression in urothelial carcinoma resulting from hypermethylation of the CpG shore of the Shh gene increases the

initiation of invasive urothelial carcinoma at the premalignant stage of progression through the stromal Hh response.

DOI: https://doi.org/10.7554/eLife.43024.004
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to the formation of invasive carcinoma. The mice were then continuously exposed to BBN for an

additional two months in the presence of 5’-azacitidine (Figure 1I). In mice treated with TM to ablate

the Hh response in the stroma, we found that the antitumor initiation effect of 5’-azacitidine was

reversed and that invasive carcinomas appeared at 6 months, as in normal BBN-exposed mice,

whereas no invasive carcinoma was observed in control animals (Figure 1J,K and Figure 1—figure

supplement 1G,H). These findings suggested that DNA methylation of the Shh gene functions as a

molecular basis for the loss of Shh expression in invasive urothelial carcinoma and confirmed the role

of Hh signaling to the stroma in the initiation of bladder cancer at the early stage of disease, as pre-

viously reported (Shin et al., 2014a; Shin et al., 2014b).

Pharmacological inhibition of DNMT activity impedes the growth of
urothelial carcinoma via increased activity of the BMP pathway,
induced by the stromal Hh response
Although the increased stromal Hh response induced by inhibiting DNA methylation was shown to

inhibit the transition of premalignant lesions to invasive carcinoma at the early stage of tumorigene-

sis, it remained unclear whether it exerted similar anticancer effects on the growth of mature urothe-

lial carcinomas. To investigate this possibility, we used a recently established orthotopic

transplantation model in which bladder cancer cells are intramurally injected into the wall of the

bladder dome, allowing the transplanted tumor cells to propagate in physiologically relevant in vivo

microenvironments (Shin et al., 2014a). Mice were orthotopically injected with BBN-induced tumor

cells derived from isogenic mice and treated with 5’-azacitidine for 1.5 months after transplantation

(Figure 2A). In the control group without inhibition of DNA methylation, tumor cells propagated

and grew into full-fledged invasive carcinomas (Figure 2B and Figure 2—figure supplement 1A). In

bladders from 5’-azacitidine-treated mice, however, no invasive carcinoma was observed (Figure 2B

and Figure 2—figure supplement 1B), suggesting that inhibition of DNA methylation fully impeded

the growth of bladder tumors in immunocompetent wild-type animals.

To investigate whether the anticancer propagation effect of 5’-azacitidine was mediated by the

stromal Hh response, we combined our pharmacological approach using 5’-azacitidine with a

genetic approach to genetically suppress the stromal Hh response while pharmacologically increas-

ing the expression of Shh in tumor cells (Figure 2C). To genetically inactivate the stromal Hh

response in recipient mice, we used the Col1a2CreER;Gli2flox/flox and Col1a2CreER;Smoflox/flox strains.

After 5 days of recovery from TM injection, BBN-induced tumors, which are derived from mice with

an isogenic background, were orthotopically transplanted, followed by treatment with 5’-azacitidine

for 1.5 months (Figure 2C). In both strains with genetic ablation of the stromal Hh response, the

anticancer growth effect of 5’-azacitidine disappeared (Figure 2D,E). These results strongly sug-

gested that the effect of 5’-azacitidine on the propagation of tumor cells was mediated through the

stromal Hh response elicited by Shh, whose expression is regulated epigenetically by cancer cells.

Next, we sought to determine whether the Hh signaling-mediated, antitumor propagation effect

was regulated by Bmp, a secreted stromal factor whose expression is known to be regulated by the

stromal Hh response in bladder (Shin et al., 2014b). Bmps are secreted stromal factors for urothelial

differentiation (Mysorekar et al., 2009), and BMP pathway activity impedes bladder cancer progres-

sion prior to the formation of invasive carcinoma by stimulating urothelial differentiation (Shin et al.,

2014b). However, the role of stromal Bmp in later stages of tumor development, especially in the

tumor growth, is unknown. To determine whether stromal Hh response-regulated Bmp expression is

involved in bladder cancer growth, we overexpressed Bmp4 in bladder tumor organoids derived

from BBN-induced tumors (Figure 1—figure supplement 1C,D). The expression of Bmp4 in these

organoids was increased by 10-fold compared with that in control organoids (Figure 2—figure sup-

plement 1C). The resulting organoids with Bmp4 expression were orthotopically injected into

Col1a2CreER;Smoflox/flox and Col1a2CreER;Gli2flox/flox mice, and the mice were then injected with TM

to genetically ablate the stromal Hh response. These animals were subsequently treated with 5’-aza-

citidine for 1 month to increase Shh expression in tumor cells (Figure 3A). We found that, compared

with wild-type bladder tumor organoids, Bmp4-expressing tumor organoids showed growth reduc-

tions after transplantation (Figure 3B,C and Figure 2—figure supplement 1D,E). In addition, after

tumor organoids were cultured in the presence of the Bmp4 protein to increase the BMP response

(Figure 2—figure supplement 1F), the Bmp4-treated organoids grew slowly, and the efficiency of

organoid formation was significantly reduced (Figure 3D,E,F). Taken together, the tumor-
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suppressing effect of Bmp, particularly in vivo where tumor cells still express Shh (with 5’-azacitidine

treatment) while the stromal Hh response is suppressed (using Col1a2CreER;Smoflox/flox and Col1a2C-

reER;Gli2flox/flox mice), supports a potential scenario of an increased reciprocal tumor-stromal signal

feedback loop in which hypomethylation-induced Shh secretion by tumor cells activates the Hh

response in bladder stroma, resulting in stromal expression of Bmps, which in turn signal back to

tumor cells to impede their growth.

Heightened activity of Hh signaling to the stroma induces a less
aggressive luminal subtype of urothelial carcinoma
To investigate the cellular basis of the cancer-restraining effects of the stromal Hh response induced

by Shh, which is regulated by DNA methylation in tumor cells, on the growth of bladder tumors, we

performed the orthotopic transplantation of BBN induced tumors to nude mice. These mice were

chosen to grow transplanted tumors under more permissive conditions because orthotopic
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Figure 2. Pharmacological inhibition of DNMT activity impedes the growth of urothelial carcinoma through an increased stromal Hh response. (A)

Schematic diagrams of the experimental strategies for evaluating the effect of DNMT inhibition on the growth of bladder cancer. Mice (14 animals in

total) orthotopically injected with BBN-induced bladder tumor cells were treated with the vehicle control (seven animals) or 5’-azacitidine (seven

animals) for 1.5 months. (B) Orthotopic allografts of BBN-induced tumors are shown in the upper panels. H and E staining of allograft sections from

mice treated with the vehicle control or 5’-azaciditine is shown in the middle panels. Magnified views (lower panels) of the boxed regions, confirming

the presence (vehicle) or absence (5’-azacitidine) of invasive carcinoma. (C) Schematic diagrams of the experimental strategies for testing the

association of the stromal Hh response with the anticancer effect of hypomethylation on the growth of bladder cancer. Col1a2CreER;Gli2flox/flox or

Col1a2CreER;Smoflox/flox mice were injected with TM on three consecutive days. BBN-induced tumors from isogenic mice were orthotopically

transplanted, and treatment with 5’-azacitidine was initiated for 1.5 months (D, E) Orthotopic allografts of BBN induced tumors are shown in the upper

panels. Sections of allografts from vehicle-injected (left panels) or TM-injected (right panels) mice were analyzed by H and E staining (D, Col1a2CreER;

Gli2flox/flox; E, Col1a2CreER;Smoflox/flox). H and E staining of tumor sections is shown in the middle panels. The lower panels show magnified views of the

boxed regions. Arrowheads in high-magnification images indicate regions of squamous differentiation. Scale bars represent 150 mm. See also

Figure 2—figure supplement 1A,B and C.

DOI: https://doi.org/10.7554/eLife.43024.006

The following figure supplement is available for figure 2:

Figure supplement 1. Pharmacological inhibition of DNMT activity impedes the growth of urothelial carcinoma by increasing Hh/BMP signaling

activity.

DOI: https://doi.org/10.7554/eLife.43024.007
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transplantation of bladder tumors to wild-type mice in the presence of 5’-azacitidine led to complete

blockade of tumor growth (Figure 2A,B); thus, the use of nude mice under more permissive condi-

tions for tumor growth allowed us to overcome the difficulty in studying the basis of the anticancer

effect of the hypomethylation-induced stromal Hh response on tumor growth. Indeed, transplanted
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Figure 3. Pharmacological inhibition of DNMT activity impedes the growth of urothelial carcinoma by increasing BMP pathway activity. (A)

Experimental scheme for evaluating the role of BMP signaling in the growth of urothelial carcinoma. TM was injected into Col1a2CreER;Gli2flox/flox (eight

animals in total) or Col1a2CreER;Smoflox/flox (eight animals in total) mice on 3 consecutive days. Mice were then orthotopically injected with Bmp4-

expressing bladder tumor organoids and subsequently treated with 5’-azacitidine for 2 weeks. (B, C) Sections of allografts from mice orthotopically

injected with control tumor organoids (left panels) or Bmp4-expressing tumor organoids (right panels) were stained with H and E. The lower panels

represent magnified views of the boxed region in the middle panels. Scale bars represent 300 mm. (D) Tumor organoids derived from BBN-induced

bladder tumors were cultured in the absence (upper panels) or presence (lower panels) of Bmp4 for 8 days. Left, middle and right panels show the

bright-field images of tumor organoids cultured for 4, 6 and 8 days, respectively. Scale bars represent 100 mm. (E) Average size of bladder tumor

organoids cultured for 4, 6, and 8 days in the absence or presence of Bmp4 protein (n = 90 organoids in each condition). (F) Quantification of cell

proliferation in tumor organoids cultured for 6 days in the absence or presence of Bmp4. Left panels show the images immunostained with DAPI and

Ki67. Ki67-positive cells are shown as a per cent of total DAPI-staining nuclei. Data are presented as the mean ± SEM, and significance was calculated

with an unpaired Student’s t test (**, p<0.01). See also Figure 2—figure supplement 1D,E,F and Figure 3—source data 1.

DOI: https://doi.org/10.7554/eLife.43024.008

The following source data is available for figure 3:

Source data 1. Quantification for the growth and cell proliferation of tumor organoids with Bmp4 treatment.

DOI: https://doi.org/10.7554/eLife.43024.009
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bladder tumors in nude mice grew even under 5’-azacitidine treatment, but they gave rise to tumor

lesions with smaller sizes than those without 5’-azacitidine treatment (Figure 4A–C and Figure 4—

figure supplement 1A,B). These findings suggest that 5’-azacitidine treatment is still effective in

suppressing tumor growth under immunocompromised conditions, which is consistent with our ear-

lier results (Figure 2A,B).

Next, we sought to investigate the molecular and cellular basis for the less aggressive growth of

bladder tumors when Hh signaling activity is increased by inhibiting DNA methylation. As shown pre-

viously (Figures 2 and 3), the anticancer effects of Hh signaling appeared to be mediated by stromal

BMP, whose signaling activity is known to be associated with the urothelial differentiation of basal

cells into luminal cells (Mysorekar et al., 2009). As our previous study on the cellular origin of blad-

der cancer showed that urothelial carcinoma is derived from basal stem cells (Shin et al., 2014a), we

hypothesized that increased Hh signaling activity might cause the tumor to differentiate into a less

aggressive form of luminal subtype, leading to much slower growth upon 5’-azacitidine treatment.

As previously reported (Fantini et al., 2018; Shin et al., 2014b), based on the expression level of

basal markers and mutational profile, the invasive carcinomas produced in our BBN model are most

similar to the basal subtype of human urothelial carcinoma (Figure 4—figure supplement 1C), which

is the most aggressive form of bladder cancer (Choi et al., 2014; Vasconcelos-Nóbrega et al.,

2012). Thus, we examined BBN-induced bladder tumors that were orthotopically grown in the pres-

ence of 5’-azacitidine to investigate the cellular differentiation of transplanted tumors. Our immuno-

histochemical analysis revealed that the expression of the luminal marker, Ck18, was increased in the

tumors treated with 5’-azacitidine, while control bladders displayed basal phenotypes such as squa-

mous differentiation and the expression of Ck5, a marker for the basal subtype (Figure 4D,E and

Figure 4—figure supplement 1D,E). Moreover, our quantitative RT-PCR experiments showed that

the expression level of luminal markers relative to basal markers was significantly increased in the

transplanted bladder tumors under 5’-azacitidine treatment compared with that of the control

group, which was accompanied by increased expression of Shh (Figure 4F and Figure 4—figure

supplement 1F). Consistent with these results, our analysis of RNA-seq expression profiles revealed

the strong luminal signature with relatively low expression of basal markers in the tumors orthotopi-

cally grown in the presence of 5’-azacitidine, whereas control allografts in the absence of 5’-azaciti-

dine showed clear standard signature of basal subtype (Figure 4G and Figure 4—figure

supplement 1G) (Damrauer et al., 2014). These results suggested that subtype conversion between

basal and luminal-like subtypes resulting from the increased Hh response induced by epigenetically

upregulated expression of Shh in tumor cells might account for the reduced tumor growth.

Stromal Hh response-induced conversion from the basal to luminal-like
subtype requires BMP pathway activity
To investigate whether conversion from the basal to luminal-like subtype upon 5’-azacitidine treat-

ment is mediated by elevated expression of Hh in tumor cells, we performed orthotopic transplanta-

tion of BBN-induced tumor organoids engineered to express shRNA targeting Shh (Figure 5A and

Figure 5—figure supplement 1A). The resulting organoids maintained low levels of Shh expression

after transplantation, even upon 5’-azacitidine treatment, whereas the control organoids showed

increased expression of Shh (Figure 5—figure supplement 1B). The expression levels of luminal

markers were significantly decreased in tumor organoids following the expression of the shRNA tar-

geting Shh after transplantation, indicating the basal-like characteristics including squamous differ-

entiation of the resulting tumors, even under 5’-azacitidine treatment (Figure 5B,C and Figure 5—

figure supplement 1C,D). Consistent with these results, our analysis of RNA-seq expression profiles

confirmed that the gene signature related with the luminal status is negatively enriched in the tumors

expressing shRNA for Shh, whereas tumor expressing control shRNA showed standard signature of

luminal-like subtype (Figure 5D and Figure 5—figure supplement 1F). Similar results were noted

when tumor organoids expressing shRNA targeting Shh, marked by mCherry expression, were

mixed and transplanted together with control organoids, marked by EGFP, into the same in vivo

microenvironment (Figure 5F). The resulting allografts revealed that mCherry-labeled tumors devel-

oped into a more aggressive, rapidly growing basal-like subtype, whereas, in the same microenviron-

ment, EGFP-labeled tumors developed into a less aggressive luminal-like subtype following

treatment with 5’-azacitidine (Figure 5G and Figure 5—figure supplement 2A), demonstrating Hh-

mediated conversion of the bladder tumor subtype.
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Figure 4. Heightened activity of Hh signaling to the stroma induces a less aggressive luminal-like subtype of urothelial carcinoma. (A) Schematic

diagrams of experimental strategies for evaluating the effect of DNMT inhibition on the growth of bladder cancer under immunocompromised

conditions. Nude mice (14 animals in total) orthotopically injected with BBN-induced bladder tumor cells were treated with the vehicle control (seven

animals) or 5’-azacitidine (seven animals) for 2 weeks. (B, C) H and E staining of allograft sections from mice treated with the vehicle control (B) or 5’-

azaciditine (C) is shown in the left panels. Right panels show magnified views of the boxed regions in the left panels. Arrowhead in the high-

magnification image indicates the region of squamous differentiation. Scale bars represent 150 mm. (D, E) Sections of tumor allografts from mice

Figure 4 continued on next page
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To further determine whether conversion between the basal and luminal-like subtypes requires

Hh-mediated BMP signaling, whose activity is necessary for the suppression of tumor growth (Fig-

ure 3), we established transplant models in which BBN-induced tumor organoids transduced to

express shRNA targeting Bmpr1a were orthotopically injected into the mouse bladder (Figure 5A

and Figure 5—figure supplement 1A). The expression of Bmpr1a was significantly decreased in the

resulting tumor organoids (Figure 5—figure supplement 1B), and transplantation of Bmpr1a knock-

down tumor organoids in the presence of 5’-azacitidine gave rise to secondary tumors with

decreased expression of luminal markers with squamous differentiation compared to tumor organo-

ids with intact Bmpr1a (Figure 5B,C and Figure 5—figure supplement 1C,E). Consistent with these

results, our analysis of RNA-seq expression profiles confirmed that the gene signature related with

the luminal status is negatively enriched in the tumors expressing shRNA for Bmpr1a (Figure 5E and

Figure 5—figure supplement 1G), whereas tumor expressing control shRNA showed standard sig-

nature of luminal-like subtype. Similar data were obtained when tumor organoids expressing shRNA

targeting Bmpr1a, marked by mCherry expression, were mixed and transplanted together with con-

trol organoids, marked by EGFP, into the same in vivo microenvironment (Figure 5F). The mixed

allografts showed that mCherry-labeled tumors developed into a more rapidly growing basal-like

subtype than EGFP-labeled tumors with the luminal-like subtype, even under 5’-azacitidine treat-

ment (Figure 5H and Figure 5—figure supplement 2B). Furthermore, we genetically ablated

Bmpr1a from BBN-induced tumor organoids derived from Bmpr1aflox/flox mice (Mishina et al., 2002)

by expressing Cre recombinase (Figure 5—figure supplement 3A,B). Consistent with the findings

described above, the resulting organoids developed into basal invasive carcinoma, even with 5’-aza-

citidine treatment (Figure 5—figure supplement 3C,D).

Taken together, our results from various genetic experiments in combination with pharmacologi-

cal approaches to manipulate Hh and BMP signaling feedback during the growth of bladder tumors

strongly suggest that subtype conversion between basal and luminal-like subtypes depends on the

reciprocal signaling feedback between tumor cells and the stroma involving epigenetically regulated

epithelial Hh expression in tumor cells, stromal Hh response-induced Bmp expression, and the BMP

response in tumor cells.

Increased methylation of the SHH gene induces the basal subtype of
human urothelial carcinoma and promotes tumor growth through
decreased activity of Hh/BMP signaling feedback between cancer cells
and tumor stroma
To determine whether Hh/BMP signaling feedback between the tumor and stroma could control the

growth of tumors and determines their subtype in human bladder cancer, we first examined multiple

bladder cancer cell lines derived from human invasive urothelial carcinomas. Three invasive bladder

cancer cell lines, J82, T24 and TCC-SUP, were chosen (Bubenı́k et al., 1973; Nayak et al., 1977;

O’Toole et al., 1978) and analyzed for the level of methylation in the regulatory region of SHH by

bisulfite sequencing. Consistent with our mouse experiments described above (Figure 1), all three

Figure 4 continued

injected the vehicle control (D) or 5’-azacitidine (E) were immunostained for the basal and luminal markers, Ck5 (green) and Ck18 (red), respectively.

Scale bars represent 100 mm. (F) Expression of the luminal markers, Upk1a (3-fold increase), Upk1b (2-fold increase), Upk2 (2-fold increase), Upk3a (2.5-

fold increase), Upk3b (2-fold increase), Krt20 (1.5-fold increase), and Krt18 (2-fold increase) in tumor allografts from mice with the vehicle control or 5’-

azaciditine treatment. Gene expression was normalized to a basal marker (Krt5). Data are presented as the mean ± SEM, and significance was

calculated with an unpaired Student’s t test (*, p<0.05; **, p<0.01; ***, p<0.001). n = 3 technical replicates, and the entire experiment was repeated six

times. (G) Gene set enrichment analysis (GSEA) of tumor allografts treated with the vehicle control (shown in panel B) and 5’-azacitidine (shown in panel

C) from RNA-Seq data using standard luminal and basal signatures obtained from previous studies. Normalized enrichment score (NES) and nominal

p-value (p) were provided from GSEA accordingly. See also Figure 4—figure supplement 1 and Figure 4—source data 1.

DOI: https://doi.org/10.7554/eLife.43024.010

The following source data and figure supplement are available for figure 4:

Source data 1. Relative expression of the luminal markers to a basal marker in tumor allografts from mice with 5’-azaciditine treatment.

DOI: https://doi.org/10.7554/eLife.43024.012

Figure supplement 1. Hh signaling to the stroma induces a less aggressive luminal-like subtype of urothelial carcinoma.

DOI: https://doi.org/10.7554/eLife.43024.011
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Figure 5. Subtype conversion of basal to luminal-like urothelial carcinoma requires Hh and BMP signaling feedback between the tumor and stroma. (A)

Tumor organoids derived from BBN-induced bladder tumors were infected using a lentivirus containing shRNA targeting Shh or Bmpr1a. The resulting

organoids were injected intramurally into the dome of the bladder, and the mice (15 animals in total) were treated with 5’-azacitidine for 2 weeks. (B)

Sections of allografts from mice orthotopically injected with control tumor organoids (upper panels, five animals), organoids with shRNA targeting Shh

Figure 5 continued on next page
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cell lines showed a significant increase in DNA methylation at the CpG shore of the SHH promoter

region (Figure 6A,B and Figure 6—figure supplement 1A) and demonstrated basal characteristics

of urothelial carcinoma with low levels of SHH expression. Pharmacological inhibition of DNMT activ-

ity with 5’-azacitidine in these cell lines significantly decreased the level of DNA methylation

(Figure 6A,B), which was associated with marked increases in the expression of SHH (Figure 6C).

Interestingly, a cell line derived from the luminal-papillary subtype RT4 (Rigby and Franks, 1970),

exhibiting high expression of SHH, showed no significant changes in the expression of SHH, even

with the DNMT inhibition (data not shown).

To investigate the functional roles of SHH expression in the growth of human bladder tumors and

the effects of Hh/BMP signaling feedback between the tumor and stroma on the subtype determina-

tion of human invasive urothelial carcinoma, we established an orthotopic xenograft model in which

one human invasive bladder cancer cell lines J82 was transplanted into immunocompromised mice

(Nod/Scid/Rag2), followed by 5’-azacitidine treatment for 1 month (Figure 6D). In the control group

without inhibition of DNA methylation, tumor cells developed into full-fledged invasive carcinomas

(Figure 6E and Figure 6—figure supplement 1B). In bladders from 5’-azacitidine treated mice,

however, much smaller lesions were observed (Figure 6E and Figure 6—figure supplement 1C),

suggesting that inhibition of DNA methylation inhibited the growth of human bladder tumor. In

addition, xenografts from 5’-azacitidine-treated animals showed characteristics of the luminal-like

subtype, with increased expression of luminal markers (Figure 6F), consistent with our observations

in the above-described mouse model (Figure 4).

To further confirm the requirement for Hh/BMP signaling feedback in the subtype determination

of human bladder cancer, we performed xenograft transplantation of a human bladder cancer cell

line that was engineered to express shRNA targeting SHH or BMPR1A (Figure 6G). After transplan-

tation, the resulting tumors maintained a low level of SHH or BMPR1A expression (Figure 6H), and

the expression levels of basal markers were significantly increased, with low expression levels of

luminal markers being observed even upon 5’-azacitidine treatment (Figure 6I). These human data

Figure 5 continued

(middle panels, five animals) or organoids with shRNA targeting Bmpr1a (lower panels, five animals) were stained with H and E. Serial sections were

immunostained for Ck5 (green) and Ck18 (red). Arrowheads indicate regions of squamous differentiation. Scale bars represent 100 mm. (C) Expression

of the luminal markers, Upk1a (shRNA for Shh, 1.6-fold decrease; shRNA for Bmpr1a, 1.5-fold decrease), Upk2 (shRNA for Shh, 2-fold decrease; shRNA

for Bmpr1a, 1.5-fold decrease), Upk3a (shRNA for Shh, 2 -fold decrease; shRNA for Bmpr1a, 1.6-fold decrease), and Krt18 (shRNA for Shh, 1.5-fold

decrease; shRNA for Bmpr1a, 1.5-fold decrease) in tumor allografts from mice injected with control tumor organoids or tumor organoids carrying

shRNA targeting Shh or Bmpr1a. Data are presented as the mean ± SEM, and significance was calculated with an unpaired Student’s t test (*, p<0.05;

**, p<0.01; ***, p<0.001). n = 3 technical replicates, and the entire experiment was repeated five times. (D, E) Gene set enrichment analysis (GSEA) of

tumor allografts expressing control shRNA and shRNA targeting Shh (D), or shRNA targeting Bmpr1a (E) from RNA-Seq data using standard luminal

signatures obtained from previous study. Normalized enrichment score (NES) and nominal p-value (p) were provided from GSEA accordingly. (F) Tumor

organoids were infected using a lentivirus containing control shRNA with EGFP or shRNA targeting Shh or Bmpr1a with mCherry. The same number of

each resulting organoids were picked manually, mixed and orthotopically transplanted into the nude mice. The mice (eight animals in total) were then

treated with 5’-azacitidine for 2 weeks. (G, H) Sections of allografts from mice orthotopically injected with mixed organoids (G, organoid with shRNA

targeting Shh, four animals; H, organoids with shRNA targeting Bmpr1a, four animals) were analyzed by H and E staining or by immunostaining for

EGFP, mCherry, Ck18 (cyanine, pseudo) and Ck5 (magenta, pseudo). EGFP or mCherry-positive tumor areas are outlined with dotted lines, and each

area was measured and quantified using the Image J program. The middle and lower panels represent magnified views of the boxed regions in the

upper panels. Scale bars represent 50 mm. Data are presented as the mean ± SEM, and significance was calculated with an unpaired Student’s t test.

(**, p<0.01; ***, p<0.001). n = 4 biological replicates. See also Figure 5—figure supplements 1, 2 and 3 and Figure 5—source data 1.

DOI: https://doi.org/10.7554/eLife.43024.013

The following source data and figure supplements are available for figure 5:

Source data 1. Expression of the luminal markers in tumor allografts expressing shRNA targeting Shh, or Bmpr1a, and the quantification of EGFP

(expressing control shRNA), or mCherry (expressing shRNA for Shh or Bmpr1a)-positive tumor areas.

DOI: https://doi.org/10.7554/eLife.43024.017

Figure supplement 1. Subtype conversion of basal to luminal-like urothelial carcinoma requires Hh and BMP signaling feedback.

DOI: https://doi.org/10.7554/eLife.43024.014

Figure supplement 2. Slow tumor growth and subtype conversion require heightened Hh/BMP signaling feedback between the tumor and stroma.

DOI: https://doi.org/10.7554/eLife.43024.015

Figure supplement 3. Blockade of BMP signaling impedes subtype conversion of urothelial carcinoma.

DOI: https://doi.org/10.7554/eLife.43024.016
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Figure 6. Increased methylation of the SHH gene induces the basal subtype of human urothelial carcinoma through decreased activity of Hh/BMP

signaling feedback between cancer cells and the tumor stroma. (A) The methylation status of the CpG island and CpG shore regions of the human SHH

gene was analyzed by bisulfite sequencing in three human invasive urothelial carcinoma cell lines, J82, T24, and TCC-SUP with or without 5’-azacitidine

treatment. Each circle represents one of 117 CpG sites, and the average degree of methylation is indicated by the black portion of the white circle. (B)

Figure 6 continued on next page
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are consistent with our observations in the mouse model, showing that the Hh pathway response in

the tumor stroma induced by elevated expression of Hh in tumor cells impedes the growth of blad-

der cancer through stromal BMP-induced subtype conversion.

Expression analysis of patient-derived urothelial carcinomas and large-
scale transcriptional analyses suggest an association of the basal
subtype of human urothelial carcinoma with poor patient survival, due
to the loss of Hh signaling activity
To validate the role of the loss of SHH induced by hypermethylation in the determination of the

molecular subtype of human bladder cancer, we examined 10 muscle-invasive urothelial carcinoma

samples derived from patients (Table 1). We found that the invasive carcinoma samples from six

patients showed characteristics of the basal subtype, with the expression of basal markers being sig-

nificantly increased (Figure 7A, Figure 7—figure supplement 1). The invasive carcinoma samples

from the remaining four patients exhibited a luminal phenotype, with elevated expression of luminal

markers (Figure 7A, Figure 7—figure supplement 1). Consistent with the data from our BBN model

and human bladder cancer cell lines (Figures 4 and 6), the luminal phenotype of the human primary

bladder cancer samples was accompanied by a marked increase in the expression of SHH, whereas

human primary tumors with the basal phenotype showed a significant decrease in SHH expression

(Figure 7B).

To further determine whether our findings in the BBN mouse model showing that the molecular

subtype of bladder cancer is determined by the expression of Shh regulated by DNA methylation

are valid in human urothelial carcinoma, we performed methylation analysis by bisulfite sequencing

in six basal subtypes and three luminal subtypes of primary invasive carcinoma samples (Table 1),

and then compared their methylation status to that of three benign urothelia. We found that the

methylation of the SHH gene, especially in the CpG shore of the promoter region, was significantly

increased in the basal subtype of human invasive carcinomas compared to that in benign urothelia

Figure 6 continued

The results obtained from bisulfite sequencing analysis of (A) are summarized. (C) Expression of SHH in J82, T24, and TCC-SUP treated with 5’-

azacitidine (J82, 6-fold increase; T24, 7-fold increase; TCC-SUP, 3-fold increase) compared to that of untreated controls. Data are presented as the

mean ± SEM, and significance was calculated with an unpaired Student’s t test (**, p<0.01; ***, p<0.001). n = 3 technical replicates, and the entire

experiment was repeated three times. (D) Orthotopic xenograft of J82 cells in immunocompromised (NOD/SCID/IL2Rgnull) mice (14 animals in total),

followed by 5’-azacitidine treatment for 1 month. (E) H and E staining of orthotopic xenograft sections from mice treated with the vehicle control (left

panels, seven animals) or 5’-azaciditine (right panels, seven animals). The lower panels show magnified views of the boxed regions in the upper panels.

Scale bars represent 300 mm. (F) Expression of the luminal markers, FOXA1 (1.8-fold increase) and GATA3 (1.8-fold increase), and the basal markers,

CDH3 (6-fold decrease) and KRT6A (9-fold decrease) in tumor xenografts from mice treated with 5’-azacitidine compared to those of the vehicle

control. Data are presented as the mean ± SEM, and significance was calculated with an unpaired Student’s t test (*, p<0.05). n = 3 technical replicates,

and the entire experiment was repeated six times. (G) The J28 cell line was infected using a lentivirus containing shRNA targeting SHH or BMPR1A. The

resulting cell line was orthotopically xenografted into the dome of the bladder, and the mice were treated with 5’-azacitidine for 1 month. (H)

Expression of SHH or BMPR1A in tumor xenografts from mice injected with J82 carrying shRNA targeting SHH or BMPR1A, respectively. Data are

presented as the mean ± SEM, and significance was calculated with an unpaired Student’s t test (*, p<0.05; **, p<0.01). (I) Expression of the luminal

markers, FOXA1 (shRNA for SHH, 2.5-fold decrease; shRNA for BMPR1A, 3-fold decrease) and GATA3 (shRNA for SHH, 2-fold decrease; shRNA for

BMPR1A, 2-fold decrease), and the basal markers, CDH3 (shRNA for SHH, 2.3-fold increase; shRNA for BMPR1A, 4-fold increase) and KRT6A (shRNA for

SHH, 2.5-fold increase; shRNA for BMPR1A, 7.2-fold increase) in tumor xenografts from mice injected with control J82 or J82 carrying shRNA targeting

SHH or BMPR1A. n = 3 technical replicates, and the entire experiment was repeated six times. Data are presented as the mean ± SEM, and significance

was calculated with an unpaired Student’s t test (*, p<0.05; **, p<0.01; ***, p<0.001). See also Figure 6—figure supplement 1A,B,C and Figure 6—

source data 1.

DOI: https://doi.org/10.7554/eLife.43024.018

The following source data and figure supplement are available for figure 6:

Source data 1. Expression of SHH, luminal and basal markers in bladder tumor cell lines and in tumor xenografts from mice treated with 5’-azacitidine,

or expressing shRNA for SHH or BMPR1A.

DOI: https://doi.org/10.7554/eLife.43024.020

Figure supplement 1. Expression analyses of patient samples and large-scale transcriptional data suggest that the decreased methylation of the CpG

shore of the human SHH promoter region impedes the growth of human urothelial carcinoma by inducing a luminal-like subtype through increased Hh/

BMP signaling feedback.

DOI: https://doi.org/10.7554/eLife.43024.019
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(Figure 7C,D). Decreased methylation in luminal subtypes of invasive carcinoma relative to basal

subtypes was also observed in these human samples (Figure 7C,D). Our analysis of primary human

bladder cancer samples for the expression and associated methylation status of SHH was consistent

with our findings from the murine BBN model of bladder cancer.

As the basal subtype of human urothelial carcinoma is the most aggressive form of bladder can-

cer, associated with lower median overall survival (Choi et al., 2014), we sought to determine

whether the SHH expression level was associated with clinical outcome in human bladder cancer

patients. We analyzed patient outcomes among a set of 41 muscle-invasive bladder tumors from

Seoul National University Hospital (Table 2) that were clustered into two groups, showing low SHH

expression (n = 31) or high SHH expression (n = 10). We found that the group with high SHH expres-

sion survived for a median of 50 months, compared to 39 months in the group with low SHH expres-

sion. The patient group with higher SHH expression therefore had better patient outcomes,

presenting a 28% survival benefit compared to the group with lower SHH expression (log rank test

p<0.05, Figure 7E).

In addition, we analyzed data from recently published large-scale studies of gene expression in

human invasive carcinoma (Robertson et al., 2017) to assess the association of SHH expression with

the molecular subtypes and patient survival. First, we analyzed the clinical outcomes of two sub-

groups stratified by Hh and BMP pathway genes (Figure 6—figure supplement 1D). We noted that

the group with low SHH expression showed molecular characteristics of the basal subtype with poor

patient outcomes compared to those of the high-SHH group with luminal characteristics (Figure 6—

figure supplement 1E,F). Based on unsupervised hierarchical clustering, we further identified three

distinct subgroups (Figure 7F): basal, luminal, and p53-like subtypes, as previously reported

(Choi et al., 2014; Robertson et al., 2017). We noted that the basal cluster showed the lowest level

of SHH expression (Figure 7F), consistent with our previous analysis and results from other studies

(Robertson et al., 2017; Shin et al., 2014b), and the median overall survival of patients with the

basal subtype was significantly lower than that of patients with the luminal subtype (log rank test

p<0.0001, Figure 7G). It is important to note that only a small fraction of the patients carried

genetic mutations in SHH and its downstream genes, suggesting that genetic alterations might not

have been the major cause of the loss of SHH expression signatures in human invasive bladder can-

cer (Figure 1—figure supplement 1A). These results support our findings from the BBN mouse

model and the analysis of primary human samples showing that the expression of Shh was regulated

by epigenetic modifications, rather than mutational changes during the development and growth of

invasive urothelial carcinoma (Figures 1, 6 and 7).

Taken together, our findings from extensive analyses of primary tumor samples and a TCGA data-

set suggest a possible basis for the development of the basal subtype of human invasive carcinomas

Table 1. Patient sources for the subtype analysis of invasive urothelial carcinoma samples.

Muscle-invasive bladder carcinoma samples were obtained from radical cystectomy or transurethral resection patients with available

disease and treatment histories, as shown.

# Sex Age
Tumor stage
and grade

Tissue
source

Intravesical
therapy

Neoadjuvant
chemotheraphy

Recurrence

1 M 65 T4a (High) N0 TURB N N/A Y

2 M 61 T4a (High) N2 Cystectomy N N N

3 M 56 T2 (High) TURB N N/A N

4 M 61 T2 (High) TURB N N/A N

5 F 74 T2 (High) TURB N N/A Y

6 M 59 T1 (High) TURB BCG N/A Y

7 M 74 T1 (High) TURB N N/A N

8 M 62 T1 (High) N0 TURB N N/A N

9 M 59 T3 (High) TURB N N/A Y

10 F 49 T2 (High) N0 TURB N N/A N

DOI: https://doi.org/10.7554/eLife.43024.021
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Figure 7. Expression analysis of patient-derived urothelial carcinomas and large-scale transcriptional analyses. (A) The relative expression of basal

(KRT5, KRT14, CD44 and KRT6A) and luminal markers (UPK1A, UPK2, ERBB2, FOXA1 and GATA3) was analyzed in human invasive urothelial carcinomas

from 10 patients. Data are presented as the mean ± SEM. n = 3 technical replicates (B) Expression of SHH in benign urothelium (white bar) and two

subtypes of invasive urothelial carcinomas (basal, dark grey bars; luminal, light grey bars) from patients. Data are presented as the mean ± SEM. n = 3

Figure 7 continued on next page
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that lack active Hh signaling. Under this scenario, loss of SHH expression due to hypermethylation

leads to the decreased expression of stromal BMP, which in turn stimulates the formation of the

basal subtype of human bladder cancer, with poor clinical outcomes.

Discussion
The proposed events during the development of urothelial carcinoma, progressing from Shh-positive

basal stem cells to distinct molecular subtypes, are summarized in Figure 8. Following the formation

of widespread CIS, the clonal loss of Shh expression caused by DNA methylation leads to suppres-

sion of the stromal Hh response, which in turn increases the number of undifferentiated premalig-

nant cells with proliferative advantages due to the decreased expression of stromal differentiation

factors. This critical event facilitates the initiation and progression of tumors at early stages, ulti-

mately resulting in the formation of the Shh-negative, basal subtype of invasive carcinoma. This

model is strongly supported by our observations of halted initiation at the early stage and signifi-

cantly decreased progression to invasive carcinoma following an increased stromal response to Hh

signal upon the treatment with a potent DNMT inhibitor to epigenetically increase the expression of

Shh. Once formed, the basal subtype of urothelial carcinoma remains Shh negative, consistent with

the observed loss of Shh in murine and human invasive urothelial carcinoma with basal characteristics

(Cancer Genome Atlas Research Network, 2014a; Cancer Genome Atlas Research Network,

2014b; Shin et al., 2014b). In contrast, invasive urothelial carcinoma of the luminal subtype devel-

ops through the distinct papillary lineage, as Shh expression is maintained, with a low CIS mutational

profile. One key feature of our model is that a luminal-like subtype can be induced from the basal

subtype of urothelial carcinoma by pharmacological modulation with 5’-azacitidine, to increase the

expression of Shh in tumor cells, resulting in an increased stromal Hh response. This observation

raises the possibility of additional pathways leading to the development of the luminal subtype of

bladder cancer; a gain of Shh expression due to epigenetic plasticity in the basal subtype induces

the luminal subtype of urothelial carcinoma. The Hh-dependent conversion of tumor subtypes is

likely mediated by stromal Bmps, as supported by our observation that increased Bmp expression in

tumor cells dramatically facilitates basal-to-luminal transition.

Epigenetic modifications, such as DNA methylation (Herman and Baylin, 2003) and histone mod-

ifications (Seligson et al., 2005) of genes associated with carcinogenesis, are commonly detected in

human malignancies (Feinberg and Tycko, 2004; Jones and Baylin, 2002). Our previous findings of

the invariable loss of Shh in murine and human urothelial carcinomas (Shin et al., 2014b), together

with studies of other solid tumors, strongly support a role of Shh as a tumor suppressor during can-

cer progression (Lee et al., 2014; Rhim et al., 2014; Yang et al., 2017), raising the important ques-

tions concerning the molecular mechanisms by which the expression of Shh is lost in tumor cells at

Figure 7 continued

technical replicates. (C) The methylation status of the CpG island and CpG shore regions of the human SHH gene was analyzed by bisulfite sequencing

in human invasive urothelial carcinoma tissues from patients (three benign tissues, six basal tumors, and three luminal tumors). The average degree of

methylation is indicated by the black portion of the white circle. (D) The results obtained from bisulfite sequencing analysis of (C) are summarized. (E)

Kaplan-Meier survival curve from a set of 41 patients with muscle-invasive bladder cancer from Seoul National University Hospital. Patients were

classified by the expression level of SHH (high in green, n = 10; low in red, n = 31). The high- and low-SHH groups were determined by an SHH/18S

value greater or less than 0.288, respectively. (F) Stratification of gene expression in RNA-seq data from the TCGA database of muscle-invasive

urothelial carcinoma. Heatmap showing the expression levels (z-score normalized log2 (FPKM +1) values) of SHH, basal markers, luminal markers and

p53-like markers. Based on unsupervised hierarchical clustering, three subgroups were identified: basal (red cluster, n = 125), p53-like (green, n = 106)

and luminal (blue, n = 118). (G) Survival analysis of patients in the three subgroups. Basal (n = 125), p53-like (n = 106) and luminal (n = 118) subtypes are

indicated by red, green and blue, respectively. The basal subtype was associated with lower median survival (27.79 months) than the luminal subtype

(40.04 months) and p53-like subtype (28.73 months). Note that the basal subtype exhibited a significantly shorter life-span than the luminal subtype (log

rank p<0.0001). See also Figure 6—figure supplement 1D,E,F,G and Tables 1 and 2.

DOI: https://doi.org/10.7554/eLife.43024.022

The following source data and figure supplement are available for figure 7:

Source data 1. Expression analysis of patient-derived urothelial carcinomas and large-scale transcriptional analyses.

DOI: https://doi.org/10.7554/eLife.43024.024

Figure supplement 1. Histopathological analysis of patient-derived urothelial carcinomas.

DOI: https://doi.org/10.7554/eLife.43024.023
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Table 2. Patient information for survival analysis.

# Sex Age
Tumor stage
and grade

Tissue source
Intravesical
therapy

Neoadjuvant
chemotheraphy

Recurrence Death

1 M 54 T1 TURB BCG N/A Y Y

2 M 60 Ta (Low) TURB MMC N/A Y N

3 M 55 Ta (High) TURB BCG N/A Y N

4 M 51 Ta (Low) TURB BCG N/A Y N

5 M 76 Ta (High) TURB BCG N/A N N

6 M 71 Ta (High) TURB MMC N/A N N

7 M 58 Ta (Low) TURB x N/A N N

8 M 83 Ta (High) TURB BCG N/A N N

9 M 71 T3a (High) N2 TURB BCG N Y Y

10 M 76 T1 (High) TURB N N/A N N

11 M 80 T1 (High) TURB N N/A Y Y

12 M 73 T1 (High) TURB BCG N/A Y N

13 M 85 T1 (High) TURB BCG N/A Y N

14 M 84 T1 (High) TURB BCG N/A N N

15 M 83 T1 (High) TURB BCG N/A N N

16 M 79 T1 (High) TURB BCG N/A N N

17 M 65 T4a (High) N0 TURB N N Y Y

18 M 84 T1 (High) TURB N N/A N Y

19 M 79 Tis N0 TURB N N N N

20 M 68 T1 N0 TURB N Y N N

21 M 69 T3b (High) N0 TURB N N N Y

22 M 86 T2 (High) TURB N N/A Y N

23 M 80 T3b (High) N0 TURB N N N Y

24 M 70 T3b (High) N0 TURB N Y N Y

25 M 61 T0 N0 Cystectomy BCG Y Y N

26 M 65 T1 (High) N0 Cystectomy N N N N

27 M 53 T2b (High) N0 TURB N N N N

28 M 62 T3b (High) N2 Cystectomy N N N Y

29 M 70 T1 N1 TURB N N N N

30 M 43 T2a (High) N2 Cystectomy
Gemcitabine/Cisplatin,

BCG

N Y N

31 M 60 T2a (High) N0 TURB N N N N

32 F 66 T1 (High) N2 Cystectomy N N N N

33 M 66 Tis N0 TURB N Y N N

34 M 59 T3 (High) Cystectomy N N Y N

35 F 57 T0 N0 TURB N N N N

36 F 49 T2b (High) N0 TURB N N N N

37 M 77 Tis N0 TURB N N N N

38 M 72 T0 N0 TURB N N N Y

39 F 76 T2a (High) N0 Cystectomy N N N N

40 F 75 T3a (High) N0 TURB N N N N

41 F 77 T3b (High) N0 Cystectomy N N N N

DOI: https://doi.org/10.7554/eLife.43024.025
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early stages of carcinoma development. A recent TCGA analysis of human bladder cancers revealed

frequent mutations in genes associated with epigenetic regulation, but interestingly, showed no

mutational changes in the SHH gene, suggesting the possibility that epigenetic changes are respon-

sible for the loss of Shh expression during the development of urothelial carcinomas. Our study

reveals that hypermethylation of the CpG shore, the upstream region with a reduced CG density of

the CpG island in the Shh promoter region, is responsible for the loss of Shh, and that pharmacolog-

ical inhibition of DNA methylation with agents such as 5’-azacitidine induces increased expression of

Shh, thereby halting the progression of urothelial carcinoma. These findings are supported by other

studies that show the importance of the CpG shore regions, rather than CpG islands, of genes

involved in tumorigenesis (Ellis et al., 2009; Irizarry et al., 2009). It is, however, still not clear

regarding the potential upstream regulators that control Shh methylation during the development of

urothelial carcinoma. A previous TCGA analysis showed frequent mutations in methyltransferases

and demethylases, such as MLL2, ARID1A, and KDM6A, raising the interesting possibility that the

increased Shh methylation is due to the mutations in these genes associated with epigenetic regula-

tion. Further studies will be necessary to investigate the specific roles of these genetic changes in

the epigenetic regulation of the Shh gene. Furthermore, it would be interesting to determine

whether other epigenetic events regulating chromatin organization, such as histone modifications,

are also involved in the loss of Shh and whether the complex enhancer of the Shh gene, a cluster of

three long-range, 840 kb regions (Lettice et al., 2003; Sagai et al., 2009), is associated with the

development of urothelial carcinoma.

One of the most interesting findings of the present study is the remarkable ability of tumors to

change their phenotypic characteristics without significant alterations in their genetic profiles.

Normal urothelium

SHH+ basal stem cells

Widespread CIS (Tis)

SHH+, high CIS, EMT markers

Papillary (Ta)

SHH+, low CIS

Elevated Hh-WNT/FGF signaling Mutations for CIS

Papillary (T1-T2)

SHH+, low CIS, FGFR3 mut

Luminal (T1-T3)

SHH+, low CIS, luminal markers

Basal (T1-T3)

SHH-, high CIS, basal markers

Neuronal

Neuroendocrine markers

FGFR3 mutation Mutations for EMT Mutations for luminal?

Neuroendocrine

origin?

Mutations?

 Decreased methylation of the SHH gene

 Increased expression of SHH in cancer cells

 Increased Hh response in tumor stroma

 Increased activity of Hh/BMP signaling feedback

Clonal loss of SHH

by DNA methylation

Luminal-infiltrated (T1-T3)

SHH+, low CIS, wt p53, EMT mut

Subtype conversion

Figure 8. Model of the development of human urothelial carcinoma, progressing from SHH-positive basal stem cells to distinct molecular subtypes.

Clonal loss of SHH expression caused by DNA methylation leads to the suppression of the stromal Hh response, which in turn facilitates the initiation

and progression of tumors at early stages, ultimately resulting in the formation of the SHH-negative, basal subtype of invasive carcinoma. Decreased

methylation of the SHH gene suppresses tumor growth by inducing subtype conversion from basal to luminal-like urothelial carcinoma through

increased activity of Hh/BMP signaling feedback between cancer cells and the tumor stroma. See text.

DOI: https://doi.org/10.7554/eLife.43024.026
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Conventionally, cancer has been considered as a disease of ‘sequential accumulation of mutations’,

and tumor phenotypes are dictated by their genetic alterations. However, recent advances in cancer

biology and genomics have modified this traditional view, demonstrating that cancer is not a single-

factorial genetic disease and that tumors exhibit a great degree of plasticity. Our observation that

the tumor subtypes are epigenetically switched through the dynamic interactions with the tumor

stroma—mediated by Hh-BMP signaling feedback—provides a clear basis for this recent view

regarding tumor plasticity. In the normal bladder, our previous study has indicated that the develop-

ment and regeneration of the urothelium depend on the balanced proliferation of basal stem cells

and their differentiation into luminal cells, which is controlled by the stromal production of multiple

factors (Shin et al., 2011). It is interesting to speculate that in cases of bladder tumors, the hierarchi-

cal relationship between basal stem cells and luminal cells observed in the normal bladder is main-

tained as basal subtype is converted into luminal subtype of bladder cancer. Interestingly, all

luminal-like tumors induced by 5’-azacitidine treatment in our study do not show histological fea-

tures of the basal subtype (e.g. squamous differentiation), although some luminal-like tumors still

maintain the low expression of certain basal markers. This suggests the interesting possibility that

there may be the intermediate subtype between basal and luminal human bladder cancer, similar to

the intermediate cells in the urothelium of the normal bladder. Moreover, in our rescue experiment,

we noticed that suppressing Hh-BMP feedback signaling with individual shRNAs for Shh or Bmpr1a

along with 5’-azacitidine treatment was insufficient to regain the gene expression of the strong basal

signature based on the GSEA analyses (Figure 5D,E and Figure 5—figure supplement 1F,G),

although the reverted tumors show increased expression of certain basal markers (e.g. CK5) and the

strong histological characteristic of the basal subtype (e.g. squamous differentiation) (Figure 5B).

These data imply the potential involvement of additional mechanisms regulated by DNA methyla-

tion—other than Hh-BMP feedback signaling—to support the complete conversion of bladder

tumors into the luminal subtype, particularly the complete loss of the basal signature, because the

tissue dynamics of normal urothelium are controlled by multiple stromal factors such as Wnt, Fgf,

and Bmp (Shin et al., 2011; Shin et al., 2014b). Further studies are required to investigate this pos-

sibility. Taken together, our findings on subtype conversion provided further insights on the current

understanding of tumor plasticity and tumor interaction with other tissue components for the devel-

opment of more effective therapeutic interventions for urothelial carcinomas.

Early detection and prevention are important therapeutic options for the treatment of cancers

(Tomasetti et al., 2017; Tomasetti and Vogelstein, 2015), and a better understanding of tumor ini-

tiation and progression at early stages is crucial for the development of the most effective preven-

tion strategies for cancer therapy. Pharmacological manipulation with 5’-azacitidine to increase Shh

expression, resulting in therapeutic activation of stromal Bmp to block bladder tumor initiation

through the differentiating of premalignant cells, could have a potentially beneficial impact on the

clinical management of human bladder cancer, especially at the early stage of onset or recurrence,

which makes this malignancy difficult and more costly to treat than other cancers. In addition to clini-

cal benefits in terms of cancer prevention, our findings regarding the tumor-restraining effects of the

stromal Hh response induced with pharmacological agents in full-fledged tumors, carry significant

therapeutic implications, especially for patients with late-stage of invasive urothelial carcinoma. A

recent TCGA analysis revealed five different subtypes of muscle-invasive urothelial carcinoma with

different patient outcomes (Cancer Genome Atlas Research Network, 2014a; Choi et al., 2014;

Hedegaard et al., 2016; Robertson et al., 2017). In these works, human invasive urothelial carcino-

mas were subdivided into five distinct molecular subtypes: luminal-papillary, luminal-infiltrated, lumi-

nal, basal and neuronal. Our results show that the loss of Shh induced by DNA methylation of the

CpG shore of the Shh promoter region leads to the initiation and, ultimately, growth of the basal

subtype of urothelial carcinoma. With pharmacological induction of the expression of Shh in epithe-

lial tumor cells of the basal subtype, which in turn increases the stromal Hh response, urothelial carci-

noma develops into a less aggressive, more manageable luminal-like subtype of bladder cancer

through stromally produced Bmp-mediated cellular differentiation. The luminal subtype of urothelial

carcinoma appears to grow more slowly, to be associated with better patient outcomes and to be

more susceptible to the immune system than the basal subtype (Figures 2 and 3). Interestingly, a

recent study showed a phenotypic shift of luminal parental tumors to basal subtypes in patient-

derived organoid culture, and showed that this change is reversed in organoid xenografts in which

the tumor stroma is restored (Lee et al., 2018). In the present study, we observed epigenetically
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regulated Hh expression in cancer cells, which in turn induces a stromal response in the tumor micro-

environment to determine the molecular subtype of bladder cancer. Our findings of Hh-dependent

subtype switching through the tumor stroma may provide a strong rationale for the phenotypic plas-

ticity observed in the human bladder tumor organoid model, which lacks a tumor stroma. The ability

to convert molecular subtypes by modulation of Hh signaling with pharmacological agents such as

5’-azacitidine could therefore facilitate the development of personalized therapeutic options for uro-

thelial carcinoma and permit potential combinatorial therapy. For example, treatment with 5’-azaciti-

dine and/or FK506 (Shin et al., 2014b; Spiekerkoetter et al., 2013) to activate the Hh response-

induced expression of cellular differentiation factors, such as BMPs, in the tumor stroma would

induce the luminal-like subtype, which is more manageable with subsequent treatment, including

immunotherapy (Massard et al., 2016; Powles et al., 2014).

In the present study, we speculate that several additional key events may be associated with Hh

signaling during the initiation and growth of urothelial carcinomas not belonging to the basal and

luminal subtypes, for which the mechanisms of progression are described above (Figure 8). Non-

muscle-invasive carcinoma, for example, is derived from Shh-positive basal epithelial cells, which

have been previously identified as cells of origin of bladder cancer (Shin et al., 2014a), via a papil-

lary pathway by maintaining active Hh signaling, in which Shh is expressed in the epithelium and the

Hh response occurs in the stroma. The Hh response in the stroma induces the expression of secreted

factors such as Wnts and Fgfs, which in turn stimulate the proliferation of epithelial cells (Shin et al.,

2011). With proliferative advantage of increased signaling feedback between the epithelium and

stroma and the additional mutations of genes such as Fgfr3, papillary invasive tumors develop while

maintaining Shh expression and low CIS signatures. The luminal–infiltrated subtype also follows the

papillary lineage, but rather than mutations in Fgfr3, it accumulates mutations associated with epi-

thelial-mesenchymal transition (EMT) while maintaining a moderate level of Shh expression and

showing no mutations in p53. Finally, the neuronal subtype characterized by the expression of neuro-

endocrine and neuronal genes (Sjödahl et al., 2017) may originate from neuroendocrine cells, but

not basal stem cells, and may develop in an Hh signaling-independent way. This speculation arises

from the results of our bioinformatic analysis of the TCGA data for the levels of SHH and BMP in five

distinct subtypes of invasive urothelial carcinoma (Figure 6—figure supplement 1G). Taken

together, our study identifying several key events and their association with Hh signaling during the

development of different subtypes of bladder cancer provides the basis for the design of precise

therapeutic strategies for individual patients with genetic variability.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(M. musculus)

C57BL/6J The Jackson
Laboratory

JAX:000664, RRID:IMSR_
JAX:000664

Genetic
reagent
(M. musculus)

Col1a2CreER The Jackson
Laboratory

JAX:029235, RRID:IMSR_
JAX:029235

Genetic
reagent
(M. musculus)

Smoflox/flox The Jackson
Laboratory

JAX:004526, RRID:IMSR_
JAX:004526

Genetic
reagent
(M. musculus)

Gli2flox/flox The Jackson
Laboratory

JAX:007926, RRID:IMSR_
JAX:007926

Genetic
reagent
(M. musculus)

Bmpr1aflox/flox Mishina
et al., 2002

MMRRC:030469-
UNC, RRID:MMRRC_
030469-UNC

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
(M. musculus)

CAnN.Cg-
Foxn1nu/Crl

Charles River CRL:194,
RRID:IMSR_
CRL:194

Genetic
reagent
(M. musculus)

NSG (NOD-scid IL2Rgammanull) The Jackson
Laboratory

JAX:005557, RRID:IMSR_
JAX:005557

Cell line
(H. sapiens)

J82 ATCC ATCC: HTB-1,
RRID:CVCL_
0359

Cell line
(H. sapiens)

T24 ATCC ATCC: HTB-4,
RRID:CVCL_
0554

Cell line
(H. sapiens)

TCC-SUP ATCC ATCC: HTB-5,
RRID:CVCL_
1738

Antibody Anti-Cytokeratin
5 (rabbit
polyclonal)

Abcam Abcam:
ab53121,
RRID:AB_
869889

IHC (1:300)

Antibody Anti-Cytokeratin
8/18 (mouse
monoclonal)

Developmental
Studies
Hybridoma Bank

DSHB:
TROMA-I,
RRID:AB_
531826

IHC (1:300)

Antibody Ki67 antibody -
Proliferation
Marker

Abcam Abcam
ab15580,
RRID:AB_
443209

IHC (1:500)

Recombinant
DNA reagent

pCMV.dR 8.74 Packaging
plasmid

Recombinant
DNA reagent

pMD2.G Addgene RRID:Addgene_
12259

Envelope
plasmid

Recombinant
DNA reagent

pSicoR-mCh-
empty

Addgene RRID:Addgene_
21907

PMID:
19587682

Recombinant
DNA reagent

pSiCoR Addgene RRID:Addgene_
11579

PMID:
15240889

Recombinant
DNA reagent

pSicoR-mCh-
mShh

This paper Lentiviral vector
expressing
shRNA targeting
the murine
Shh gene

Recombinant
DNA reagent

pSicoR-mCh-
hSHH

This paper Lentiviral vector
expressing
shRNA targeting
the human
SHH gene

Recombinant
DNA reagent

pSicoR-mCh-
mBmpr1a

This paper Lentiviral vector
expressing
shRNA targeting
the murine
Bmpr1a gene

Recombinant
DNA reagent

pSicoR-mCh-
hBMPR1A

This paper Lentiviral vector
expressing
shRNA targeting
the murine
BMPR1A gene

Recombinant
DNA reagent

Puro.Cre
empty vector

Addgene RRID:Addgene_
17408

PMID:
18308936
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

pLenti6.3/
V5-Bmp4

This paper Lentiviral vector
expressing
murine Bmp4

Peptide,
recombinant
protein

Recombinant
Murine BMP-4

PeproTech PeproTech:
315–27

Commercial
assay or kit

MethylEdge
Bisulfite
Conversion System

Promega Promega:
N1301

Commercial
assay or kit

TaKaRa EpiTaq
HS (for bisulfite-
treated DNA)

TaKaRa TaKaRa:
R110A

Commercial
assay or kit

pGEM-T Easy
Vector System I

Promega Promega:
A1360

Commercial
assay or kit

RNeasy Mini
Kit

Qiagen Qiagen:
74104

Commercial
assay or kit

DNeasy Blood
and Tissue Kit

Qiagen Qiagen:
69504

Commercial
assay or kit

QIAshredder Qiagen Qiagen:
79654

Commercial
assay or kit

High-Capacity
cDNA reverse
transcription kit

Applied
biosystem

Applied biosystem: 4368814

Commercial
assay or kit

Power SYBR
Green PCR
Master Mix

Applied
biosystem

Applied biosystem: 4367706

Chemical
compound,
drug

N-Butyl-N-(4-hydroxybutyl)
nitrosamine

Tokyo
Chemical
Industry

TCI: B0938

Chemical
compound,
drug

5-aza-2’-
deoxycytidine

Sigma Sigma: A3656

Chemical
compound,
drug

Mirus Bio
TransIT-LT1
Transfection
Reagent

Mirus Bio Mirus Bio:
MIR 2300

Chemical
compound,
drug

Corning Matrigel
Growth Factor
Reduced (GFR)

Corning Life
Science

Corning:
354230

Chemical
compound,
drug

Corning
Matrigel
Basement Membrane
Matrix High
Concentration (HC)

Corning Life
Science

Corning:
354248

Chemical
compound,
drug

polybrene
(hexadimethrine bromide)

Sigma Sigma: H9286

Chemical
compound,
drug

Blasticidin Gibco Gibco: R21001

Chemical
compound,
drug

Puromycin
dihydrochloride

Sigma Sigma: P8833

Software,
algorithm

Image J ImageJ RRID:SCR_
003070

(http://imagej.
nih.gov/ij/)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

GraphPad
Prism

GraphPad Prism RRID:SCR_
015807

Version 6,
https://graphpad.
com

Software,
algorithm

SnapGene Viewer Snap Gene RRID:SCR_
015053

http://www.
snapgene.com/
products/
snapgene_
viewer/

Software,
algorithm

MUSCLE EMBL-EBI RRID:SCR_
011812

http://www.
ebi.ac.uk/Tools/
msa/muscle/

Software,
algorithm

Methprimer 2.0 The Li Lab
at UCSF,

Li and Dahiya,
2002

RRID:SCR_
010269

http://urogene.
org/

Software,
algorithm

Oasis2 Han et al.,
2016

https://sbi.
postech.ac.kr/
oasis2/

Software,
algorithm

Java Treeview Saldanha,
2004

RRID:SCR_
016916

http://jtreeview.
sourceforge.net/

Software,
algorithm

Cluster 3.0 de Hoon
et al., 2004

http://bonsai.
hgc.jp/~mdehoon/
software/cluster/
software.htm

Software,
algorithm

Oncoprint Gao et al.,
2013 ;
Cerami
et al., 2012

RRID:SCR_
014555

http://www.
cbioportal.org/

Software,
algorithm

Tophat Trapnell
et al., 2009

Software,
algorithm

Cufflinks Trapnell
et al., 2012

Software,
algorithm

GSEA Broad
Institute

RRID:SCR_
003199

http://www.
broadinstitute.
org/gsea/index.
jsp

Mice
For the genetic deletion experiments, Col1a2CreER (RRID:IMSR_JAX:029235) mice were mated with

the Smoflox/flox (RRID:IMSR_JAX:004526) or Gli2flox/flox (RRID:IMSR_JAX:007926) strains to obtain

Col1a2CreER;Smoflox/flox, Col1a2CreER;Gli2flox/flox mice, which were administered 8 mg of TM (Sigma)

per 30 g of body weight on 3 consecutive days by oral gavage. Male mice at 8–10 weeks of age

were used. For experiment involving 5’-azacitidine, mice were injected intraperitoneally with 1 mg of

5’-azacitidine (Sigma) per 1 kg of body weight daily. The duration of the dosing is described in each

figure. In each experiment, mice in each cage were randomly selected for drug/TM or control treat-

ments. Mouse procedures were performed under isoflurane anesthesia with a standard vaporizer. All

procedures were performed under a protocol approved by the Institutional Animal Care and Use

Committee at POSTECH (IACUC number: POSTECH-2017–0094).

BBN-induced bladder carcinogenesis
A 0.1% concentration of BBN (TCI) was dissolved in drinking water, and BBN-containing water was

provided to mice ad libitum for 4 to 6 months in a dark bottle. BBN-containing water was changed

twice a week. Bladders were collected and analyzed after 4 to 6 months of BBN administration.
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Methylation analysis using bisulfite sequencing of genomic DNA
The DNA methylation status of murine and human Shh was determined using bisulfite genomic DNA

sequencing. For bisulfite conversion, 1 mg of genomic DNA was converted using the MethylEdge

Bisulfite Conversion System (Promega), following the manufacturer’s instructions. The genomic

sequence of the regulatory region of murine and human Shh was obtained from the NCBI nucleotide

database (Mus musculus: NC_000071.6, Homo sapiens: NG_007504.2), and the CpG island and CpG

shores in the regulatory region were identified by Methprimer 2.0 (Li and Dahiya, 2002) (RRID:SCR_

010269). The 2 kb regions upstream and downstream of the CpG island were referred to as the

‘CpG upshore’ and ‘CpG downshore’ regions, respectively. For sequencing analysis, bisulfite-con-

verted DNA was amplified by EpiTaq HS (TaKaRa), and PCR products containing the CpG island and

CpG shore regions were subcloned into the pGEM-T easy vector (Promega). The region containing

the CpG island and shores was divided into eight sub-regions, and each sub-region was amplified

using specific primers designed for bisulfite-converted target sequences (summarized in Table 3).

The sequencing data were assembled using SnapGene software (https://snapgene.com/, RRID:SCR_

015053) and the MUSCLE: multiple sequence alignment tool (https://www.ebi.ac.uk/Tools/msa/mus-

cle/, RRID:SCR_011812). The average degree of methylation was obtained from the analysis of 8–10

clones of each sub-region. The methylated CpG sites were counted and distinguished from the

unmethylated CpG sites.

Bladder organoid culture
BBN-induced bladder tumors were minced and then incubated in DMEM (Gibco) containing collage-

nase I, II (20 mg/ml each) and thermolysin (250 KU/ml) at 37˚C for 2 hr, with 5 min trituration every

30 min. A single-cell suspension was obtained and filtered through 100 mm cell strainers (Falcon).

After lysis of red blood cells in ACK lysis buffer (Gibco), the cells were washed with DMEM contain-

ing 10% fetal bovine serum (Millipore) and counted using a hemocytometer (Sigma). For bladder

organoid culture, single tumor cells were overlaid in growth factor-reduced Matrigel (Corning) and

incubated with advanced DMEM/F-12 (Gibco) supplemented with 10 mM HEPES (pH 7.4, Sigma), 10

mM Nicotinamide (Sigma), 1 mM N-acetyl-L-cysteine (Sigma), GlutaMAX (Gibco), 1% penicillin/strep-

tomycin (Gibco), 50 ng/mL mouse EGF (Peprotech), 0.5X B-27 (Gibco), 1 mM A8301, and 10 mM

Y-27632. For Bmp4 treatment, organoids were treated with recombinant Bmp4 protein (Peprotech)

for 8 days, with medium transition every 2 days. For the knock-down experiments, bladder tumor

Table 3. Information for primers used in the bisulfite sequencing of regulatory regions of the murine and human SHH genes.
Target species Primer name Forward sequence (5’-3’) Reverse sequence (5’-3)

Mouse

Shh promoter TTTTTAGTTTTGTTATTATTTAAAATTAGG CAAAAATCACCAAAAAACATCTAAC

Shh upshore region 1 TTTGTATATTTATATTTGGGGATGG AAAAAACTTATAAAACAAACTACCTTTC

Shh upshore region 2 TTGTATTTTGTTAGGATAGATTGGAAG ACCCCATCCCCAAATATAAATATAC

Shh upshore region 3 GGATGGTGAGGTTTTGTTATATTGT ATATCCAACACTCTTTCAAAAAAAA

Shh upshore region 4 TTGAAGTAAAATGAGGTTTTAGGATGT CACCATCCCAAACTTAAAAAAATTA

Shh downshore region 1 ATGTTGTTGTTGTTGGTTAGATGTT ATAAAAAACCCCATCTTCTAATACC

Shh downshore region 2 GGGTATTAGAAGATGGGGTTTTTTA CCCAAACTTTCTCAATTACAATTCT

Shh downshore region 3 GAAAGTTTGGGGGTAGTTTTGATA TATTTACAAAAAAACCCATTTCCAA

Human

SHH promoter TTTTTTTGTTTTTTGATTGTTGTTT TCAACTTTTTAAAATACCTCCTCTTC

SHH upshore region 1 TTTTGGGGAAGAAAAATTAAATAAT CAACAATCAAAAAACAAAAAAAATCTA

SHH upshore region 2 AGTGAGGTGATTATAGATTTAAAGAT CAACTATTATTTAATTTTTCTTCCCC

SHH upshore region 3 ATTTGTAAAGGGAATTTTTGGAAAT AACCAAAAAAATAAAATTTAAAACTCC

SHH upshore region 4 TGTTAAGGGTGGAAGGTAGGGTAGTT CAAAAATTCCCTTTACAAATCAACT

SHH downshore region 1 GGAAGAGGAGGTATTTTAAAAAGTTG AACTAAACCCTTAACCTCCATTCTC

SHH downshore region 2 GAGAATGGAGGTTAAGGGTTTAGTT CCTCCTAACTTTTCCAATTAAAAAT

SHH downshore region 3 ATTTTTAATTGGAAAAGTTAGGAGG CAAAAAAACCCATTTCTAACTTCAA

DOI: https://doi.org/10.7554/eLife.43024.027
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organoids were infected with lentivirus containing shRNAs specific for mouse/human Shh or Bmpr1a

(Table 4). For lentivirus production, 293 T cells were co-transfected with lentiviral plasmids and pack-

aging vectors (pCMV.dR 8.74 and pMD2.G [RRID:Addgene_12259], Addgene) using TransIT-LT1

(Mirus Bio). The supernatant was collected 48 hr post-transfection and filtered through 0.45-mm-pore

PES filter (Millipore). The viral titer was calculated in 3T3 cells by serial dilution of the virus-contain-

ing supernatant. For lentiviral infection, bladder organoids were incubated in lentivirus-containing

medium with 8 mg/ml polybrene (Sigma) for 12 hr at 37˚C. For selection of infected organoids, GFP-

or mCherry-positive organoids were picked up from Matrigel under a fluorescence microscope.

Orthotopic transplantation of bladder tumors
Bladder tumors were dissociated into single cells as described above. Cells were resuspended in 80

ml DMEM containing 50% Matrigel (BD Bioscience) and then submucosally injected with 29-gauge

insulin syringes into the anterior aspect of the bladder dome. The abdominal incisions and skin were

then closed with a 4–0 nylon suture, and the surgical site was disinfected with alcohol. For orthotopic

transplantation of tumor organoids, bladder tumor organoids were selected, resuspended in 50%

organoid medium and 50% Matrigel and then transplanted into recipient mice.

Human bladder tumor samples and cancer cell lines
Frozen human bladder tissue samples were obtained from the tissue bank of Seoul National Univer-

sity Hospital. For fresh bladder tumor samples, 0.5–1 cm3 specimens of fresh bladder tissue were

obtained from patients undergoing cystectomy or TURB under a protocol approved by the SNUH

Institutional Review Board (IRB Number: 1607-135-777). Informed consent and consent to publish

was obtained from the patients. The cancer tissues were evaluated before being transported to

POSTECH for further analysis. For experiments involving bladder cancer cell lines, J82 (RRID:CVCL_

0359), T24 (RRID:CVCL_0554) and TCC (RRID:CVCL_1738) were used. All cell lines were authenti-

cated using STR profiling method and were tested negative for mycoplasma contamination.

Quantitative RT-PCR
Human or mouse bladder samples were snap frozen in liquid nitrogen, then homogenized with a

mortar and pestle, and RNA was extracted using the RNeasy Plus Mini Kit (Qiagen). The RNA sam-

ples were subsequently dissolved in RNase-free water, and their concentration and purity were

determined with a spectrophotometer. The TAE/formamide electrophoresis method (Masek et al.,

2005) was used for the analysis of RNA quality. For quantitative RT-PCR of mRNA transcripts, first-

strand cDNA was synthesized using a High-Capacity cDNA reverse Transcriptase kit (Applied Biosys-

tems) with oligo dT. Quantitative RT-PCR was performed using SYBR Green Supermix (Applied Bio-

systems) and a One-step cycler (Applied Biosystems), and gene expression was normalized to the

housekeeping gene HPRT1.

Histological analysis
Tumor specimens were prefixed in 10% neutral-buffered formalin for 12 hr, then embedded in paraf-

fin and sectioned into 4-mm-thick sections using a microtome. The slides were stained with hematox-

ylin and then counter-stained with eosin for histological analysis. For immunostaining, tumor

specimens were embedded in OCT compound (Tissue-Tek) and sectioned into 10-mm-thick sections

with a cryostat (Leica).

Table 4. shRNA sequences targeting the murine and human SHH and BMPR1A genes.

Target species shRNA
Target
sequence

Sense Antisense

Mouse
Bmpr1a GGGTCGTTACAACCGTGATTT GGGUCGUUACAACCGUGAUUU AAAUCACGGUUGUAACGACCC

Shh CTTTAGCCTACAAGCAGTTTA CUUUAGCCUACAAGCAGUUUA UAAACUGCUUGUAGGCUAAAG

Human
BMPR1A GTCCAGATGATGCTATTAATA GUCCAGAUGAUGCUAUUAAUA UAUUAAUAGCAUCAUCUGGAC

SHH CTACGAGTCCAAGGCACATAT CUACGAGUCCAAGGCACAUAU AUAUGUGCCUUGGACUCGUAG
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Immunofluorescence analysis of tissue sections
Bladder tumors were dissected from mice, fixed in 10% neutral-buffered for 3 hr, washed three times

in PBS, incubated in 30% sucrose overnight, and embedded in OCT compound (Tissue-Tek). The

slides were subsequently washed twice in PBS, blocked in 2% goat serum with 3% BSA in PBS con-

taining 0.25% Triton X-100 for 1 hr, and incubated overnight at 4˚C in a humidified chamber with pri-

mary antibodies diluted in blocking solution. Sections were washed three times with PBS containing

0.25% Triton X-100 and incubated for 1 hr at RT with the appropriate Alexa Fluor-conjugated sec-

ondary antibodies diluted 1:1000 in blocking solution. The slides were next washed three times with

PBS and tissue sections were mounted with Prolong Gold mounting reagent (Invitrogen). All immu-

nofluorescence images were analyzed by confocal microscopy (Leica SP5 or Olympus FV1000).

RNA-Seq library construction
Total RNA was extracted with TRIzol reagent (Thermo Fisher) according to the manufacturer’s

instructions. RNA-seq libraries were constructed using the TruSeq sample Prep Kit V2 (Illumina).

Quantity of RNA-seq library was determined by Nanodrop, and average quantity of RNA-seq librar-

ies ranged from 30 to 50 ng/ml. RNA-seq libraries were sequenced using a NextSeq platform with

single-end reads of 75 bases.

Differential gene expression and gene set enrichment analysis (GSEA)
of RNA-seq data
Raw reads from fastq files were aligned to the reference mouse genome assembly mm10 using

Tophat allowing no mismatch (Trapnell et al., 2009). Differentially expressed genes were analyzed

using Cufflinks tools (Trapnell et al., 2012). From all annotated genes, genes were removed if the

average of rpkm across all sequenced samples is below 1.0, likely to have low depth to assign the

genes. Gene set enrichment analyses were performed according to the instructions (RRID:SCR_

003199). To generate a custom gene set for each luminal and basal marker, representative genes for

each signature were obtained from previous study (Damrauer et al., 2014). The RNA-seq datasets

used in the study have been deposited in NCBI GEO (Accession number: GSE129441).

Data analysis
Statistical analysis was performed using GraphPad Prism software v.6. (RRID:SCR_015807). All data

are presented as the mean ± SEM, and two group comparisons were conducted with a two-tailed

Student’s test. A value of p<0.05 was considered statistically significant. For the analysis of TCGA

data, the gene expression levels of muscle-invasive bladder cancer patients were downloaded from

the TCGA data portal (https://portal.gdc.cancer.gov/). The FPKM expression values were log2(x + 1)

transformed for convenient comparison of mRNA abundance estimates, where x denotes the FPKM

value for each gene. The log-transformed expression values were normalized to z-scores for further

analysis. Gene Cluster 3.0 was used for unsupervised hierarchical clustering (de Hoon et al., 2004),

with default settings of an uncentered correlation and centroid linkage for the similarity metric and

clustering method, respectively. Visualization of the mRNA cluster results was conducted using Java

TreeView (Saldanha, 2004) (RRID:SCR_016916). To examine the clinical output of different mRNA

clusters, survival analysis was conducted using the Oasis2 tool (Han et al., 2016). For the Kaplan-

Meier survival plot, patients with overall survival of 5 years or less were considered for survival analy-

sis. The Oncoprint format of mutation occurrences was plotted from cBioPortal (Cerami et al.,

2012; Gao et al., 2013) (RRID:SCR_014555).
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