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Abstract
Although atherosclerosis is a multifactorial disease, the role of hemodynamic information

has become more important. Low and oscillating wall shear stress (WSS) that changes its

direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo
models were proposed to reveal the relation between the WSS and the early atherosclero-

sis. However, these models possess technical limitations in mimicking real physiological

conditions and monitoring the developmental course of the early atherosclerosis. In this

study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model

to resolve these limitations. Zebrafish larvae are optically transparent, which enables tem-

poral observation of pathological variations under in vivo condition. WSS in blood vessels of

15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry

(PIV) technique, and spatial distribution of lipid deposition inside the model was quantita-

tively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly depos-

ited in blood vessel of lowWSS. The oscillating WSS was not induced by the blood flows in

zebrafish models. The present hypercholesterolaemic zebrafish would be used as a poten-

tially useful model for in vivo study about the effects of lowWSS in the early atherosclerosis.

Introduction
Cardiovascular diseases (CVDs) are one of the major causes of mortality in western countries
accounting for one in every three deaths in the US in 2009 [1]. Most CVDs are closely related
to atherosclerosis. Atherosclerosis is usually initiated by an inflammatory process in the endo-
thelial cells (ECs) of blood vessels [2]. The inflammatory process induces lipid-laden materials
to deposit on arterial walls [3]. The deposit grows, forms fatty streaks and eventually closes off
the affected artery after the formation of early-stage atherosclerosis.

The atherosclerotic deposits are predominantly observed in regions of curvature, bifurcation
and branching of arterial vessels [4, 5]. Previous studies reported that hemodynamic conditions
were disturbed in the regions, and the disturbed flow induces low or high oscillatory wall shear
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stress (WSS) on the ECs of arterial vessels [6–8]. The WSS is the skin frictional force per unit
area acting on the wall, whose direction is parallel to local blood flow. The specific WSS condi-
tion is critical for the initiation and formation of early atherosclerosis. The processes encom-
pass physiological changes in ECs, lipid accumulation and oxidation [9]. To reveal the
pathology of WSS-induced early atherosclerosis, effects of WSS on morphological and physio-
logical changes of ECs were investigated [10, 11]. Recently, chemical shear sensor systems and
gene expressions of ECs were considered [12, 13]. However, the exact pathology is not fully
revealed yet due to technological limitations encountered in experiments [6, 13].

The absence of suitable experimental model has been the main difficulty among the several
obstacles encountered in revealing the pathology of WSS-induced early atherosclerosis. In vitro
and in vivomodels have been widely used to study the relations between WSS and early athero-
sclerosis [11, 14, 15]. In in vitro experiment, WSS over cultured EC monolayers was regulated
by changing supplied flow rate [16, 17]. Estrada et al. [16] found that the size of cultured ECs
under a constant flow condition was larger than that under the static condition. Ueki et al. [17]
reported that the shear strain acting on ECs and nuclei of ECs was in proportion to the applied
WSS. These results supported that the WSS can change the morphological and biophysical
conditions of the ECs. The In vitro systems are useful for observing functional and morpholog-
ical responses of the ECs according to WSS under precisely controlled experimental conditions.
However, the in vitro condition is relatively different from the actual physiological environ-
ment of ECs in human blood vessels. This limitation was resolved by inducing early atheroscle-
rosis in in vivo animal models such as pigs [18], rabbits [19] and mouse [20, 21]. High-fat diet
was fed to the animals, or genes were manipulated to make these models. WSS is subsequently
evaluated using several measurement techniques [22, 23]. The in vivo experiments with animal
models have successfully observed lipid localisation in low or oscillatory WSS regions. How-
ever, atherosclerotic lesions in conventional animal models were commonly conducted with
post mortem examinations [24–26]. These examinations have many problems in investigating
the actual roles of WSS on the pathological time course of early atherosclerosis.

Zebrafish (Danio rerio) is a tropical freshwater fish which has been receiving considerable
attention as a disease model for the study of embryological development [27, 28] or pathology
of several circulatory vascular diseases [29]. Experimental studies using zebrafish have several
advantages, such as ease of genetic manipulation and rapid generation time [30–32]. Moreover,
an optical clarity of zebrafish enables a real-time monitoring of the developing pathologies. A
research group recently developed a hypercholesterolaemic zebrafish model and investigated
early atherosclerosis in vivo [33–36]. They observed vascular lipid accumulation, morphologi-
cal and functional alteration of EC layer, recruitment of myeloid cells and lipid uptake by
macrophages. However, the pathologic mechanism of early atherosclerosis related with haemo-
dynamics was not fully elucidated.

In the present study, the hemodynamic characteristics of blood flows in the main blood ves-
sels were measured, and focal distribution of lipid deposit in hypercholesterolaemic zebrafish
models was investigated to demonstrate the feasibility of zebrafish as a WSS-induced early ath-
erosclerosis model. Velocity field information was measured using a micro particle image
velocimetry (μ-PIV) technique, and the focal lipid deposit was observed using a confocal
microscope.

Materials and Experiment Setup

2.1 Zebrafish and high-cholesterol diet
Transgenic (fli1a:EGFP) zebrafish with ECs expressing green fluorescent protein (GFP) was
supplied by the Korea Zebrafish Organogenesis Mutant Bank (Daegu, Korea). Larvae of
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zebrafish were maintained at a room temperature of 28 ± 0.5°C under a 14 h:10 h light—dark
cycle. A high-cholesterol diet was prepared by dissolving a normal feed (baby meal; Jail Feed
Corporation, Korea) in a diethyl ether solution of cholesterol (Sigma Aldrich, USA) to a final
content of 4% (w/w) cholesterol in the feed after evaporating the ether solution [33]. The feed
was supplemented with 10 μg/g fluorescent cholesteryl ester analogue (cholesteryl BODIPY1

542/563 C11; Molecular Probes) to investigate the lipid accumulation in vascular vessels of zeb-
rafish. Zebrafish samples were fed twice in a day, starting from five days post fertilisation (dpf).
All experimental procedures were approved by the Animal Care and Ethics Committee of
POSTECH and the methods followed approved guidelines.

2.2 Experiment setup
A 15 dpf zebrafish was placed on 7% methylcellulose in a chamber (Chamlide TC; Live Cell
Instrument, Korea) under anaesthesia by short exposure to 0.02% Tricaine. Two different mea-
surement setups were utilized, depending on the region of interest. A microscope (Nikon,
Japan) attached with a 20× objective lens (NA = 0.5) was employed to capture the flow images
for the estimation of mean velocity in vessels. This relatively low magnification objective is suit-
able for capturing large areas of zebrafish at the same time. A modified fluorescence micro-
scope (Zeiss Axiovert 200, Germany) with a 40× objective lens (NA = 0.6) was used to obtain
velocity profiles and to observe the ECs of blood vessels. The zebrafish model was illuminated
with a fluorescence excitation lamp (X-Cite 120 Q; Lumen Dynamics, Ontario, Canada)
through a shift-free filter to identify GFP ECs. Sequential flow images were acquired with the
illumination of halogen lamp at the centre plane of the vessel for 5 s, which corresponds to 12–
15 cardiac cycles. Images of blood flows were obtained using a high-speed camera with 1 k × 1
k pixel resolution (Fastcam SA1.1; Photron, USA) at 125 frames to 500 frames per second,
depending on the flow rate of each vessel. The effective pixel sizes for the two different mea-
surement setups were 1 μm and 0.77 μm, respectively. All experiments were conducted at a
room temperature of 28°C. All fishes were awakened in fresh water and returned to the fish
tank immediately after each experiment.

2.3 μ-PIV
A FFT (fast Fourier transform)-based cross-correlation algorithm was applied to the flow
images captured for PIV (particle image velocimetry) analysis. PIV technique determines the
mean displacement of tracer particles in the consecutive interrogation windows by searching
the location of a dominant peak in the corresponding cross-correlation plane [37]. RBCs (red
blood cells) in blood were directly used as tracer particles. The sizes of each interrogation win-
dow for the two experimental setups were 32 × 8 pixels and 48 × 8 pixels. The physical dimen-
sions of the two interrogation windows are similar (256 μm2, 228 μm2). Adjacent interrogation
windows was 50% overlapped. A recursive correlation method with multiplication mode [38]
was applied and Gaussian peak fit was employed to increase a sub-pixel measurement accu-
racy. To enhance signal-to-noise ratio in the cross-correlation, the background image obtained
by averaging sequential images was subtracted from the original flow images (Fig 1a) [39]. All
PIV analyses were performed using PIVview-2C (PIVTEC, GmbH) software. The velocity pro-
files in straight vessels were measured by cropping flow images and images of vessel wall into
100 × 60 pixels in size at the middle of each vessel. Unlike conventional PIV techniques, the
volumetric illumination has been commonly employed in μ-PIV experiments. The depth of
focus of an objective lens used in μ-PIV substituted for the role of the light sheet in conven-
tional PIV. A halogen lamp was installed to give forward scattering. To obtain clear images of
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RBCs, a band-pass filter (550 ± 15nm) was installed in consideration of the absorption spectral
peak of RBCs (~540nm) [40].

2.4 Confocal microscopy
A Leica confocal microscope (Leica Microscopy Systems, GMBH) with 10× and 40× objective
lens (Leica Microscopy Systems, GMBH) was used to detect two fluorophores in zebrafish.
Excitation laser was turned to 488 and 561 nm for GFP and BODIPY542/563 C11, respectively.
The emission light from the two fluorophores was filtered using two different ranges of wave-
length (GFP: 500–550 nm and BODIPY 542/563 C11: 565–605 nm). Each zebrafish sample
was anaesthetised and mounted on a 7% methylcellulose. 3D confocal images reconstructed by
using 2D section images were merged into a 2D image which was composed of maximum pixel
intensity values along the depth direction. The merged images of GFP and BODIPY542/563
C11 (cholesteryl ester) were used to measure the outer (DO) and inner (DI) diameters of blood
vessels, respectively (Fig 1). The images of BODIPY542/563 C11 were also utilized to analyse

Fig 1. Identification of RBC-rich region and cell-free layer (CFL). (a) Bright field image of Artery 1 (A1) after subtraction of the background image. (b) Map
of standard deviation (SD). (c) Binary image created by thresholding the SDmap. (d) Fluorescent image of endothelial cells (ECs) on the vessel wall.
Confocal microscopy image of (e) green fluorescent ECs on the vessel wall and (f) cholesteryl ester BODIPY 542/563 C11 circulating inside the blood vessel.
The outer (DO) and inner (DI) diameters of the vessel were indicated by white arrows. (g) The DO and thickness of EC layer (TEC) of each vessel were
compared. (h) Terminologies should express the blood vessel, TCFL (thickness of CFL) and DR (diameter of RBC-rich region).

doi:10.1371/journal.pone.0142945.g001
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the quantity of lipid deposit. The acquired images were analysed and processed using LAS AF
2.7 software (Leica Microsystems Ltd. Germany). To increase the contrast between the images
of circulating cholesteryl ester and deposited lipids, the pixel intensity values from 125 to 255
in the merged image (8bit) are rearranged to 0 to 255. When intensity values were smaller than
125, they were converted to 0. Most circulating cholesteryl esters were converted to 0, because
they had relatively low intensity values. The yellow fluorescence from BODIPY 576/589 C11
was pseudo-color encoded to appear as red colour to clearly distinguish the green and yellow
fluorescence in zebrafish, as depicted in Fig 1f.

Analysis Methods

3.1 Vessel partition
The average length of 15 dpf zebrafish models treated in this study was approximately 4.3±0.2
mm. As shown in the confocal microscope image of Fig 2, the main blood vessel was divided
into 10 partitions, which were named from the first artery partition (A1) to the fifth vein parti-
tion (V5). These partitions were divided based on the length of the zebrafish sample, and the
average vessel length of each partition was approximately 460 μm. The leftmost partitions, A1
and V1, were located at the right end of the swim bladder. Small vessels containing interseg-
mental vessels were not included in the region of interest in this study.

3.2 Identification of cell-free layer (CFL)
CFL was observed in the near-wall region of blood vessels of zebrafish because of the Fåhraeus
—Lindqvist effect in small-scale vessels (Fig 1h) [41, 42]. Thus, this region should be identi-
fied to estimate WSS accurately. Fig 1 shows the mechanism of CFL identification in a vessel.
The background image obtained by averaging the sequential images was subtracted from the
original images to remove the static structures, including vessel walls. As shown in Fig 1a, the
background-subtracted image clearly shows the RBC motion. RBC-rich regions could be eas-
ily distinguished by applying image processing techniques [43, 44]. In this study, the standard
deviation (SD) map labelling the SD of image intensities in the subtracted images was adopted
to depict the RBC-rich regions. As shown in Fig 1b, the pixels in the RBC-rich regions have
large SD values because RBC movements induce large intensity fluctuations. An iterative
selection thresholding method (ISTM) was applied to the SD map for conversion to binary
images, in which the RBC-rich region was white and the remaining region of the image was
black (Fig 1c) [45]. The threshold value in the ISTM was determined based on the median
value between the mean intensity values of RBC-rich region and CFL. The binary images were
used to determine the average diameter of the RBC region (DR) and utilised as a mask in PIV
analysis. By analysing the GFP images of vessel wall captured by the fluorescence microscope
(Fig 1d), the outer diameter of the blood vessel (DO) was obtained. However, the EC layers in
the fluorescence images were not clearly distinct. The GFP images of EC layer and fluores-
cence images of cholesteryl BODIPY1 576/589 C11 were obtained separately using confocal
microscopy (Fig 1e and 1f). The DO and DI of blood vessel were measured based on the
merged confocal images of green EC layer and red cholesteryl BODIPY1 576/589 C11 circu-
lating inside the vessel, respectively. The thickness of EC (TEC) was evaluated by subtracting
DI from DO and then dividing by 2. The representative TEC was obtained by averaging the
data measured at the three points of each vessel (A1, A5, V1, V2, V3, V4 and V5) in three zeb-
rafish samples (Fig 1g).
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Finally, the thickness of CFL (TCFL) was determined using the following equation:

TCFL ¼ DO � 2� TEC � DR

2
ð1Þ

All image processing procedures were conducted using a free-ware program (ImageJ, ver-
sion 1.47).

3.3 WSS determination
TheWSS in blood vessels was determined by assuming that plasma only contacts ECs because
of the presence of CFL and the linear velocity profile of plasma in the gap between the edge of
RBC-rich region and vessel wall. Previous studies utilised the same assumption to measure the
WSS in arterioles (29.5–67.1 μm) of rat cremaster muscles [46] or the blood flows in rat skeletal
muscle arterioles (21–115 μm) [47], with validation of measurement accuracy.

In the present study, WSS (τw) was determined using the following equation:

tw ¼ m
Vedge

TCFL

ð2Þ

where μ is the dynamic viscosity of plasma, and Vedge denotes the RBC velocity at the edge of
RBC-rich region ((red dotted line in Fig 1h). Plasma is a Newtonian fluid, thus the plasma
viscosity of zebrafish was assumed to be constant (1.2 cp) based on previous result that the vis-
cosity of icefish plasma is similar to that of human plasma [48–51]. The value of Vedge was cal-
culated by extrapolating RBC velocities measured by μ-PIV technique (blue circles in Fig 3d),
with the help of second-order polynomial curve fitting.

We utilized 4 different average velocities in the present study (Table 1). The velocity fields
at four different phases in A1 partition were overlaid with the SD map (Fig 3a). Fig 3b shows a
temporal variation of the Space-averaged RBC mean velocity (VSpace) for 10 cardiac cycles,
with clearly shown pulsatile waveform. One cardiac cycle was divided into 10 phases, and
phase averaging was conducted to enhance the measurement accuracy of WSS [52]. Fig 3c dis-
plays the phasic variation of the phase-averaged VSpace. The portion of the deceleration phase
was longer than that of the acceleration phase. The phase-averaged velocity profiles at three dif-
ferent phases were compared in Fig 3d. The WSS at each phase was determined by measuring
the slope of red line at the corresponding phase.

Fig 2. Angiogram of a zebrafish at approximately 15 days post-fertilisation (dpf). Vasculature was divided into 10 partitions by length: Arteries 1–5 (A1–
5), Veins 1–5 (V1–5).

doi:10.1371/journal.pone.0142945.g002
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Fig 3. Measurement of wall shear stress in blood vessels. (a) Velocity vector fields in artery 1 (A1) at phase angles of 1, 4, 7 and 10 were overlaid with SD
map. Each cardiac cycle was divided into 10 phases. (b) Temporal variation of Space-averaged RBCmean velocity (VSPACE). (c) Space-averaged RBC
mean velocity (VSPACE) were averaged again in phase.(d) Velocity profiles at phases 1, 4 and 7. Red square dots: velocity magnitude of RBCs at the edge of
RBC-rich region; blue dots: RBC velocity measured by μ-PIV technique; green dots: inner wall of blood vessel; blue dashed lines: fitting curve; red lines:
velocity profile of plasma in CFL.

doi:10.1371/journal.pone.0142945.g003

Table 1. Terminology and definition of various average velocities.

Terminology Definition (Averaging method) Location

RBC mean velocity Mean velocity of RBCs averaged along radial
direction

Time-averaged RBC mean velocity
(VTime)

Mean velocity of RBCs averaged for 10 cardiac
cycles

Fig 4

Space-averaged RBC mean velocity
(VSpace)

Mean velocity of RBCs space-averaged in each
vessel

Figs 3 and
5

Representative RBC velocity (VRep) Average of all RBC velocities in each vessel for 10
cardiac cycles

Section 4.1

doi:10.1371/journal.pone.0142945.t001
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3.4 Statistical analysis
All data were expressed as mean value ± SD. Comparison between the two groups was con-
ducted with a Student’s t test using Excel 2013 (Microsoft). An overall value of P� 0.05 was
considered statistically significant.

Results

4.1 Haemodynamic flow characteristics
The heart rate of 15 dpf zebrafish treated in this study was approximately 165±28 beats per
minute. Reynolds number (Re) was calculated based on the dynamic viscosity of whole blood
(0.005 pa�s) [44], blood density ρ (1050 kg/m−3) and the representative RBC velocity (VRep) of
A1 (≒1.245mm/s), V5 (≒0.109mm/s). Re at vessels A1 and V5 were calculated as 0.005±0.002
and 0.0003±0.0001, respectively. Womersley number (Wo) is defined as follows:

Wo ¼Di

2
ð wr
mBlood

Þ12 ð3Þ

where ω is the angular frequency of the cardiac cycle. The values ofWo at vessels A1 and V5
were 0.016±0.003 and 0.015±0.003, respectively. To validate our PIV analysis, we measured
RBC mean velocity in the segment A1 (dorsal aorta) of 3dpf (n = 3), 5dpf (n = 3) zebrafishes
for which there are published data. The measured value is in reasonable agreement with the
published results (3dpf (≒0.6mm/s) and 5dpf (≒1mm/s) zebrafish) (S1 Text) [53].

4.2 Pulsatile flow in main vessels
The time-averaged RBC mean velocity (VTime) in the main vessels was represented with pseu-
docolouring (Fig 4). As a typical example, the vector field in the caudal vein (V4) was depicted
using the corresponding pseudocolours. The upper and lower colour lines in Fig 4 represent
the arterial and venous flows from the swim bladder to the tail, respectively. The binary image
distinguishes the vasculature from the corresponding entire the bright field image (Fig 1C). An

Fig 4. Color-coded Time-averaged RBCmean velocity (VTIME) in the main blood vessels. A selected region is enlarged to show the corresponding RBC
velocity vectors.

doi:10.1371/journal.pone.0142945.g004

Atherosclerosis andWall Shear Stress in Zebrafish

PLOS ONE | DOI:10.1371/journal.pone.0142945 November 12, 2015 8 / 16



arterial flow moves towards the right side of the image, whereas the direction of a venous flow
is the opposite. The VTime in A1 was nearly 1 mm/s, and it gradually decreased flowing to the
tail. By contrast, the minimum VTime value near the tail was increased as the blood flow goes
back to the heart.

Fig 5 compares the pulsatility of blood flow at each vessel segment (A1–A5, V1–V5). Colour
bars represent the range of the RBC mean velocity during cardiac cycles. The range of VSpace

was gradually reduced from A1 to V5. A pulsatility index (PI) was defined by the following
equation to quantify the pulsatility of VSpace at each vessel.

PI ¼ VMax�VMin

VRep

ð4Þ

where VMax and VMin represent the maximum and minimum VSpace for the entire cycles,
respectively. The variation trend of PI along the main vessel was generally similar to that of
VTime, except for the first venous vessel V1. The pulsatile flow was unidirectional without any
backflow in all the main vessels, as shown in Fig 5.

4.3 Comparison of WSS distribution
A time-averaged WSS at each vessel partition was calculated by statistically averaging the varia-
tions of WSS for 10 phases. Fig 6 shows mean WSS of six zebrafish samples at seven vessel seg-
ments. The mean WSS at A1 was 8.26 dyne/cm2, whereas the values at V3, V4 and V5 were less
than 1.2 dyne/cm2.

4.4 Comparison of lipid accumulation
Fig 7a shows the combined confocal 2D sectional image of ECs and cholesteryl ester. This
image shows a lateral section at a center of the caudal vein (Fig 7a). A left side of the 2D sec-
tional image and Fig 7b are somewhat blurry because the whole vessels were not placed on the
same focal plane of the confocal microscopy. Several bright fluorescent spots were observed in
the caudal vein near the tail (Fig 7a and 7c). Fig 7b and 7c show the magnified green and red

Fig 5. Variations of space-averaged RBCmean velocity (VSpace), and pulsatility index (n = 3) along the
main blood vessel. The horizontal line in each bar plot represents the median value.

doi:10.1371/journal.pone.0142945.g005
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images in a square box of Fig 7a. EC layers of the vessel wall (Fig 7b) and the lipid deposit on
the vessel wall (Fig 7c) are clearly shown in the magnified images. Several black ellipses which
indicate RBCs and circulating red cholesteryl ester are also shown in Fig 7c. A cross sectional
image was acquired along the vertical dotted line marked in Fig 7a (Fig 7d) to observe the loca-
tions of the lipid deposits in the vessel wall more clearly.

Pixel intensities of red merged images (after applying digital image processing) were statisti-
cally averaged for each blood vessel to quantify the deposition of lipids. Then the averaged
intensity at each vessel was divided by the value at the segment A1 for relative comparison
among whole vessel segments (Fig 7e). Mean values of the relative pixel intensities at the seg-
ments A1~A5, V1 and V2 are smaller than 5, while the values at the segment V3~V5 are larger
than 23.

Control experiments were conducted by feeding normal diet without any supplementary
cholesterol. Lipid deposits were not observed in blood vessels of the control group (S2 Text).

Discussion
In this study, most lipids were deposited on veins near the tail where the measured WSS has
low values. This result is in good agreement with the results obtained from human and other
animal models [11, 54, 55]. Oshinski et al. evaluated WSS in aorta of eight healthy volunteers
using MR phase velocity mapping technique [56]. They found that mean and peak WSS have
small values in regions where early atherosclerosis is more likely to be formed. A similar rela-
tionship between lowWSS and formation of plaque was reported in carotid artery [57], coro-
nary artery [58], and blood vessels of animals [59, 60]. Although the deposit of lipids in the
veins of zebrafish models is not well matched with the human atherosclerosis in arteries, it can
be explained by the zebrafish vasculature in the early stage [33, 61, 62]. In the early stage, the
main arteries and veins of zebrafish vasculature are directly connected, rather than intercon-
nected through capillaries. This direct connection facilitates arterial blood flow to be supplied
to the veins. A plenty of oxygen contained in the arterial flow has been known as one of impor-
tant reasons of lipids deposit in arteries [63]. The specific condition was indirectly detected

Fig 6. Time-averaged wall shear stress of pulsatile flow at seven vessel segments (n = 6) *P < 0.05.

doi:10.1371/journal.pone.0142945.g006
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from the variation of the pulsatility index at each vessel of 15 dpf zebrafish models (Fig 5). The
pulsatility index in the main artery decreases with approaching the tail, and the value is gradu-
ally recovered in the veins when the blood is returned to the heart. This implies that some por-
tion of pulsatile blood flows in the main arteries is directly transferred to the main veins
through intersegmental vessels (Fig 2).

The similar distribution of the value of VRep and WSS also can be explained by the same rea-
son (Figs 4 and 6). VRep at the V1 is smaller than that at the A1 because the diameter of the V1
is larger than the diameter of A1, and a portion of the blood flow in the main arteries returns to
the heart through the subintestinal vein as shown in Fig 2 [61].

For a systematic investigation of the relation between WSS and early atherosclerosis in zeb-
rafish, the variation of relative fluorescence intensity, which indicates the amount of lipid
deposit, was examined according to the magnitude of WSS (Fig 8). The data at V3–V5 were

Fig 7. Lipid accumulation along the main blood vessel of 15 dpf zebrafish. (a) Typical confocal microscopy image of the caudal vasculature in a 15 dpf
zebrafish. Bright fluorescent displays lipid deposit in the blood vessel. White arrows denote the location of lipid accumulation. ECs and fluorescent lipid image
in the square dotted region were magnified in (b) and (c), respectively. (a)~(c) 2D sectional image, lateral view. (d) Cross sectional image at the vertical dotted
line in (a). (e) Variation of relative fluorescence intensity of lipid in10 vessels. (n = 11) *P < 0.001.

doi:10.1371/journal.pone.0142945.g007
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marked as red squares to distinguish the vessels where lipids were mostly deposited. The locali-
zation of lipid deposit was confirmed quantitatively by checking the confocal microscope
images (Fig 7). The lipid deposit in a zebrafish can be interpreted as cholesteryl ester, free fatty
acid, triglycerides and phospholipids as reported in a previous study. [33]. Stoletov et al. (2009)
made a hypercholesterolemic zebrafish model using similar method to the present study, and
observed that lipid deposit exhibits several inflammatory processes that occurred in the early
atherosclerosis of human. Morphological and functional changes of ECs were observed in the
location of lipid deposit. The symptom recruits myeloid cells, and transplanted macrophages
uptake the lipids on the vessel of 15dpf zebrafish. They also observed deposition of lipids in the
caudal vein. However, they did not reveal the reasons [33, 59]. Based on these results, localized
deposition of lipids in lowWSS regions can be considered as suitable evidence to suggest the
zebrafish as a suitable disease model to study the WSS-induced early atherosclerosis.

The WSS distribution in each vessel was highly correlated with the RBC velocity because
WSS was evaluated by Vedge calculated from the RBC velocity (Figs 4 and 6). The WSS mea-
surements in segments A2–A4 were not included to focus on lowWSS condition. The WSS in
the excluded vessels can be easily inferred to have relatively higher values than the lowWSS
region (V3–V5) from the values in A1 and A5 (Fig 6).

Atherosclerosis in human commonly occurs in large arteries, where the Re andWo of blood
flow reach 103–104 and 10, respectively [13]. The haemodynamic condition combined with
complex vessel geometries leads to flow separation, recirculation and turbulent shear flow.
These flow structures induce low or oscillatory WSS which direction is changed periodically.
Previous studies reported that the oscillatory WSS condition is important with the lowWSS
condition in the outbreak of early atherosclerosis [64, 65]. In the present study, the blood flow
in 15 dpf zebrafish exhibited low Re (< 0.01) andWo (< 0.02) in the main vessels. Turbulent
flow or the complex flow structures were not observed in 15 dpf zebrafish because of low Re.
The lowWo caused the velocity profile along the radial direction to always remain unidirec-
tional without a flow reversal as shown in Figs 3a and 4 [66].

Zebrafish is suitable for studying the effects of lowWSS on the outbreak of early atheroscle-
rosis, and it is not suitable for studying the effects of oscillatory WSS. The zebrafish model has
potential to disclose unknown physiology about lowWSS-induced early atherosclerosis. Its

Fig 8. Relation between the relative fluorescence intensity and wall shear stress at seven vessels. The
data at V3–V5 are marked as red squares to distinguish the vessels where lipids were mostly deposited.

doi:10.1371/journal.pone.0142945.g008
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unique strength to observe the temporal progression of the disease with detailed haemody-
namic information in in vivo condition would help to overcome the limitation of previous
experimental models. In addition, the WSS-induced change of ECs observed in the zebrafish
model can be used as a new index for early diagnosis of atherosclerosis. The results imply that
zebrafish model can be utilized for drug discovery to block the pathology of early atherosclero-
sis. The in vivomonitoring of the effects of drugs at low prices can be unique strength [67].

Although the relationship between lowWSS and lipid deposit was clearly shown, the
changes of ECs, mid-process between lowWSS condition and lipid deposition, was not demon-
strated in the present study. Study on the effect of lowWSS on the functional features of ECs is
required as a future work. The WSS-induced lipid deposit focused in the present study occurs
in the early stage of atherosclerosis. An examination on the growth of atherosclerosis beyond
the early atherosclerosis in zebrafish models would be another interesting research topic.

Conclusion
WSS was measured in the main blood vessels of 15dpf zebrafish with micro-PIV technique,
and the lipid deposits at every blood vessels were compared quantitatively by using the confocal
microscope images. A clear relation between lowWSS condition and the lipids deposit was
demonstrated. It implies that zebrafish can be utilized as a suitable animal model for the
research about the lowWSS-induced early atherosclerosis. The unique strengths of zebrafish
model would be helpful to reveal the pathology of early atherosclerosis and to search effective
diagnostic methods or therapeutic drugs for the disease.
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