FISEVIER

Contents lists available at ScienceDirect

European Journal of Combinatorics

On geometric distance-regular graphs with diameter three

Sejeong Bang a,1, J.H. Koolen b,c

ARTICLE INFO

Article history: Received 6 February 2013 Accepted 19 June 2013 Available online 28 August 2013

ABSTRACT

In this paper we study distance-regular graphs with intersection array

$$\{(t+1)s, ts, (t-1)(s+1-\psi); 1, 2, (t+1)\psi\}$$
 (1)

where s,t,ψ are integers satisfying $t\geq 2$ and $1\leq \psi \leq s$. Geometric distance-regular graphs with diameter three and $c_2=2$ have such an intersection array. We first show that if a distance-regular graph with intersection array (1) exists, then s is bounded above by a function in t. Using this we show that for a fixed integer $t\geq 2$, there are only finitely many distance-regular graphs of order (s,t) with smallest eigenvalue -t-1, diameter D=3 and intersection number $c_2=2$ except for Hamming graphs with diameter three. Moreover, we will show that if a distance-regular graph with intersection array (1) for t=2 exists then $(s,\psi)=(15,9)$. As Gavrilyuk and Makhnev (2013) [9] proved that the case $(s,\psi)=(15,9)$ does not exist, this enables us to finish the classification of geometric distance-regular graphs with smallest eigenvalue -3, diameter $D\geq 3$ and $c_2\geq 2$ which was started by the first author (Bang, 2013) [1].

© 2013 Elsevier Ltd. All rights reserved.

^a Department of Mathematics, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea

^b School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026. Anhui. PR China

c Department of Mathematics, POSTECH, Hyoia-dong, Namgu, Pohang 790-784, Republic of Korea

E-mail addresses: sjbang@ynu.ac.kr (S. Bang), koolen@postech.ac.kr (J.H. Koolen).

¹ Tel.: +82 53 810 2316; fax: +82 53 810 4614.

1. Introduction

For unexplained definitions and notations the reader is referred to Section 2. Recall that a non-complete distance-regular graph Γ with valency k and smallest eigenvalue θ_{\min} is called *geometric* if there exists a set C of cliques such that each edge lies in exactly one clique in C and each clique in C is a Delsarte clique, i.e., a clique of exactly $1+k/(-\theta_{\min})$ vertices (see [10]). So a geometric distance-regular graph is the point graph of a partial linear space where the set of lines is a set of Delsarte cliques. It was shown in [13] that for a positive integer $m \geq 2$ there are only finitely many coconnected distance-regular graphs with valency at least three and smallest eigenvalue at least -m that are not geometric.

In this paper we study geometric distance-regular graphs with diameter three. A geometric distance-regular graph with diameter three has intersection array

$$\{(t+1)s, t(s+1-\psi_1), (t-t_2)(s+1-\psi_2); 1, (t_2+1)\psi_1, (t+1)\psi_2\}.$$
 (2)

where $0 \le t_2 < t$ and $1 \le \psi_1 \le \psi_2 \le s$ are all integers (see [13, Lemma 4.1]). Examples of geometric distance-regular graphs with diameter three are the Hamming graph H(3,q), the Johnson graph J(n,3) $n \ge 6$, the Grassmann graph $J_q(n,3)$ $n \ge 6$, the bilinear forms graph $H_q(n,3)$ and so on. Note that not every distance-regular graph with intersection array (2) is geometric. For example, the Doob graph with diameter three (i.e., the Cartesian product of a Shrikhande graph with a complete graph on 4 vertices), which is not geometric, has the same intersection array as the Hamming graph H(3,4).

A distance-regular graph is exactly a generalized hexagon if and only if it has intersection array (2) with $t_2 = 0$ and $\psi_1 = \psi_2 = 1$. A regular near hexagon is exactly a graph with intersection array (2) and $\psi_1 = \psi_2 = 1$ that is locally the disjoint union of cliques. For larger diameter, the regular near 2D-gons of order (s, t) with $D \ge 4$, $c_2 \ge 3$ and $s \ge 2$ are exactly dual polar graphs, see [8, Theorem 9.11]. The case satisfying $D \ge 4$, $c_2 = 2$ and $s \ge 2$ is still open. Regular near hexagons are even less known, see [7] for some recent progress. In this paper we will consider graphs with intersection array (2) satisfying $c_2 = 2$ and $s \ge 1$. In this case it follows by [13, Lemma 4.2 (i)] that $t_2 = 1$ and $\psi_1 = 1$.

For positive integers s, t, ψ satisfying $t \ge 2$ and $\psi \le s$, we denote by $G(s, t; \psi)$ a distance-regular graph with intersection array

$$\{(t+1)s, ts, (t-1)(s+1-\psi); 1, 2, (t+1)\psi\}.$$
 (3)

Although a graph $G(s, t; \psi)$ is not necessarily geometric the following lemma shows that it usually is.

Lemma 1.1. Let $\Gamma = G(s, t; \psi)$ be a distance-regular graph with intersection array (3), where s, t, ψ are integers satisfying $t \ge 2$ and $1 \le \psi \le s$. If parameters s and t satisfy

$$s > \begin{cases} 2(t+1)^2 + 1 & \text{if } t \ge 3\\ 6 & \text{if } t = 2 \end{cases}$$

then Γ is geometric with smallest eigenvalue -t-1.

Proof. Note that -t-1 is the smallest eigenvalue of Γ . If parameters s and t satisfy $t \ge 3$ and $s > 2(t+1)^2+1$, then Γ is geometric with smallest eigenvalue -t-1 by [13, Theorem 5.3]. If s > 6 and t=2, then the result immediately follows by [1, Theorem 3.1].

It was shown in [11, Corollary 2] that for a thick regular near 2*D*-gon with order (s, t), the number t is bounded by a function in s and D, i.e., $t < s^{\frac{4D}{h}} - 1$ where $h := \max\{i \mid (c_i, a_i, b_i) = (c_1, a_1, b_1)\}$. With the same proof, it can be shown that this bound also holds for geometric distance-regular graphs. We will show in the next theorem that if Γ is a $G(s, t; \psi)$ then s is bounded by a function in t, which gives us a dual result to the result of Hiraki and Koolen [11, Corollary 2].

Theorem 1.2. Let an integer $t \ge 2$ be given. Then there exists a positive constant C := C(t) (only depending on t) such that if a graph $G(s, t; \psi)$ exists where s, ψ are integers satisfying $1 \le \psi \le s$ and $(t, \psi) \ne (2, 1)$ then

$$s \leq C$$

holds (and hence $\psi < C$).

To prove this result we show that usually a graph $G(s, t; \psi)$ has only integral eigenvalues (see Lemma 3.2). This situation is similar to the case of regular near hexagons. It was shown by Shad and Shult [15] that a regular near hexagon has integral spectrum unless it is a generalized hexagon. However, the graph G(1, 5; 1) with intersection array $\{5, 4, 3; 1, 2, 5\}$, which arises as the point-block incidence graph of the square 2-(11, 5, 2)-design, has irrational eigenvalues $\pm \sqrt{3}$.

It is known that there are no geometric distance-regular graphs with smallest eigenvalue -2, diameter $D \ge 3$ and $c_2 \ge 2$ (see [6, Theorem 3.12.2, Theorem 4.2.16]). Bang [1, Theorem 4.3] has shown that any geometric distance-regular graph Γ with smallest eigenvalue -3, diameter $D \ge 3$ and $c_2 \ge 2$ satisfies one of the following:

- (a) The Hamming graph H(3, s + 1), where $s \ge 2$.
- (b) The Johnson graph J(s-1, 3), where $s \ge 7$.
- (c) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread, where $s \in \{3, 5\}$.
- (d) $\Gamma = G(s, 2; \psi)$ with intersection array $\{3s, 2s, s + 1 \psi; 1, 2, 3\psi\}$, where $1 < \psi < s$.

We will show in Theorem 1.3 that if a graph $G(s, 2; \psi)$ exists, where s and ψ are integers with $1 < \psi < s$, then $(s, \psi) = (15, 9)$.

Theorem 1.3. For any given integers s and ψ with $1 < \psi < s$, if a distance-regular graph with intersection array $\{3s, 2s, s+1-\psi; 1, 2, 3\psi\}$ does exist then $(s, \psi) = (15, 9)$.

As Gavrilyuk and Makhnev [9] proved that a G(15, 2; 9) (with intersection array $\{45, 30, 7; 1, 2, 27\}$) does not exist, we have the following result.

Theorem 1.4. A geometric distance-regular graph with smallest eigenvalue -3, diameter $D \ge 3$ and $c_2 \ge 2$ is one of the following.

- (i) The Hamming graph H(3, s + 1), where $s \ge 2$.
- (ii) The Johnson graph J(s-1, 3), where $s \ge 7$.
- (iii) The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread, where $s \in \{3, 5\}$.

In Section 3, we prove Theorem 1.2. To show this result we consider the two cases, $\psi > \frac{t}{2(t+1)}s$ and $\psi \leq \frac{t}{2(t+1)}s$. If $\psi > \frac{t}{2(t+1)}s$ then we prove Lemma 3.1 by showing that the multiplicity of the smallest eigenvalue of the corresponding dual graph is bounded above by a function in t. In this case s is also bounded above by a function in t. On the other hand, if $\psi \leq \frac{t}{2(t+1)}s$ then we prove in Lemma 3.2 that there exists a finite set S such that if $(s,\psi) \not\in S$ then any graph $G(s,t;\psi)$ has only integral eigenvalues. Using Theorem 1.2, we show in Theorem 3.4 that for a fixed integer $t \geq 2$, there are only finitely many distance-regular graphs of order (s,t) with smallest eigenvalue -t-1, diameter D=3 and intersection number $c_2=2$ except for the Hamming graphs with diameter three. In Section 4, we prove Theorem 1.3 by showing in Lemma 4.1 that $\psi \leq \frac{1}{3}s$ does not occur.

2. Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [6] for more background information. For a connected graph Γ , the distance d(x,y) between two vertices x,y of Γ is the length of a shortest path between x and y in Γ , and the diameter D is the maximum distance between any two vertices of Γ . Let $V(\Gamma)$ be the vertex set of Γ . For any vertex $x \in V(\Gamma)$, let $\Gamma_i(x)$ be the set of vertices in Γ at distance precisely i from x, where i is a non-negative integer not exceeding D. The adjacency matrix A_Γ of a graph Γ is the $(|V(\Gamma)| \times |V(\Gamma)|)$ -matrix with rows and columns indexed by $V(\Gamma)$, where the (x,y)-entry of A_Γ equals 1 whenever d(x,y)=1 and 0 otherwise. The eigenvalues of Γ are the eigenvalues of A_Γ . Let $\theta_0, \theta_1, \ldots, \theta_n$ be the distinct eigenvalues of Γ and let $m_\Gamma(\theta_i)$ be the multiplicity of $\theta_i(i=0,1,\ldots,n)$. A sequence of vertices $W=w_0,w_1,\ldots,w_\ell$, which are not necessarily mutually distinct, is called a walk of length ℓ if w_i and w_{i+1} are adjacent for each $i=0,\ldots,\ell-1$. The number of walks of length ℓ from x to y is given by $(A_\Gamma^\ell)_{(x,y)}$, where $(A_\Gamma^\ell)_{(x,y)}$ is the (x,y)-entry of matrix A_Γ^ℓ . If $w_0=w_\ell$ then W is called a closed walk. Let $Tr(A_\Gamma^\ell)$ denote the trace of A_Γ^ℓ (i.e., the sum of the diagonal entries of A_Γ^ℓ). Then we have

$$\sum_{i=0}^{n} m_{\Gamma}(\theta_{i})\theta_{i}^{\ell} = Tr(A_{\Gamma}^{\ell}) = \text{the number of closed walks of length } \ell \text{ in } \Gamma \quad (\ell \geq 1).$$
 (4)

A connected graph Γ is called a *distance-regular graph* if there exist integers $b_i, c_i, i = 0, 1, \ldots, D$, such that for any two vertices x, y at distance i = d(x, y), there are precisely c_i neighbors of y in $\Gamma_{i-1}(x)$ and b_i neighbors of y in $\Gamma_{i+1}(x)$ where D is the diameter of Γ . In particular, Γ is regular with valency $k := b_0$. The numbers b_i, c_i and $a_i := k - b_i - c_i$ ($0 \le i \le D$) are called the *intersection numbers* of Γ . Set $c_0 = b_D = 0$. We observe $a_0 = 0$ and $a_0 = 1$. Array

$$\iota(\Gamma) = \{b_0, b_1, \dots, b_{D-1}; c_1, c_2, \dots, c_D\}$$

is called the *intersection array* of Γ . We define $k_i := |\Gamma_i(x)|$ for any vertex x and $i = 0, 1, \ldots, D$. Then we have

$$k_0 = 1, k_1 = b_0, k_{i+1} = \frac{k_i b_i}{c_{i+1}} (i = 0, 1, \dots, D-1).$$
 (5)

Suppose that Γ is a distance-regular graph with valency $k \geq 2$ and diameter $D \geq 2$. It is well known that Γ has exactly D+1 distinct eigenvalues which are the eigenvalues of the following tridiagonal matrix

$$L_{1}(\Gamma) := \begin{bmatrix} 0 & b_{0} & & & & & & \\ c_{1} & a_{1} & b_{1} & & & & & \\ & c_{2} & a_{2} & b_{2} & & & & & \\ & & \cdot & \cdot & \cdot & & & & \\ & & c_{i} & a_{i} & b_{i} & & & & \\ & & & \cdot & \cdot & \cdot & & & \\ & & & c_{D-1} & a_{D-1} & b_{D-1} & & & \\ & & & & c_{D} & a_{D} \end{bmatrix}$$

$$(6)$$

(cf. [6, p.128]). The standard sequence $(u_i(\theta))_{0 \le i \le D}$ corresponding to an eigenvalue θ of Γ is a sequence satisfying the following recurrence relation:

$$u_0(\theta) = 1, \qquad u_1(\theta) = \frac{\theta}{k}, \qquad c_i u_{i-1}(\theta) + a_i u_i(\theta) + b_i u_{i+1}(\theta) = \theta u_i(\theta) \quad (1 \le i \le D).$$

Then the multiplicity of the eigenvalue θ is given by

$$m_{\Gamma}(\theta) = \frac{|V(\Gamma)|}{\sum_{i=0}^{D} k_i u_i^2(\theta)},\tag{7}$$

which is known as *Biggs' formula* (cf. [4, Theorem 21.4], [6, p.128]). Let $\mathbb N$ denote the set of positive integers. Recall that the *local graph* of a vertex x is the subgraph of Γ induced by the set of neighbors of x in Γ , and a *clique* is a set of pairwise adjacent vertices. A distance-regular graph is of *order* (s, t) if the local graph of any vertex is the disjoint union of t+1 cliques of size s for some positive integers s, t. A distance-regular graph of order (s, t) is called a *regular near 2D-gon of order* (s, t) if $a_i = c_i(s-1)$ ($i=1,2,\ldots,D$).

3. Proof of Theorem 1.2

For given integers s, t, ψ with $t \ge 2$ and $1 \le \psi \le s$, let $\Gamma := G(s, t; \psi)$. By (6), Γ has exactly four distinct eigenvalues $\theta_0 > \theta_1 > \theta_2 > \theta_3$:

$$\theta_0 = (t+1)s, \qquad \theta_i = \frac{3s - 2\psi - 1 + (-1)^{i-1}\sqrt{(s+1-2\psi)^2 + 4(t-1)s}}{2} \quad (i=1,2), \quad (8)$$

$$\theta_3 = -t - 1.$$

By (5) and (7), we find

$$|V(\Gamma)| = \frac{(s+1)\left\{(t^2 - t)s^2 + 2\psi(st+1)\right\}}{2\psi} \tag{9}$$

and

$$m_{\Gamma}(\theta_3) = m_{\Gamma}(-t-1) = \frac{s^2(s+1-\psi)\left\{(t^2-t)s^2 + 2\psi(st+1)\right\}}{\psi(2s^2+2s-2\psi s + 2st + t^2 + t - 2\psi t)}.$$
 (10)

Suppose that Γ is geometric. The *dual graph* of Γ , denoted by $\widehat{\Gamma}$, is the graph whose vertices are the Delsarte cliques of Γ (i.e., cliques of size s+1) and two Delsarte cliques are adjacent if they intersect. Let B be the vertex–(Delsarte clique) incidence matrix (i.e., the (0, 1)-matrix with rows and columns indexed by the vertex set and the set of Delsarte cliques respectively, where the (x, C)-entry of B is 1 if the vertex x is contained in the Delsarte clique C and 0 otherwise). Then

$$BB^{T} = A_{\Gamma} + (t+1)I_{|V(\Gamma)|} \quad \text{and} \quad B^{T}B = (s+1)I_{|V(\widehat{\Gamma})|} + A_{\widehat{\Gamma}}, \tag{11}$$

where B^T is the transpose of B and I_v is the $v \times v$ identity matrix. By double-counting the number of ones in B, we find

$$|V(\widehat{\Gamma})|(s+1) = |V(\Gamma)|(t+1) \tag{12}$$

and thus

$$|V(\widehat{\Gamma})| = (t+1)(st+1) + \frac{t(t^2-1)s^2}{2t}.$$
(13)

In particular, $\widehat{\Gamma}$ is a regular graph with valency t(s+1).

Lemma 3.1. Let an integer $t \ge 2$ be given. Then there exists a positive constant C := C(t) (only depending on t) such that if a graph $G(s,t;\psi)$ exists where s,ψ are integers satisfying $1 \le \psi \le s$ and $\frac{t}{2(t+1)}s < \psi \le s$ then

$$s \leq C$$

holds

Moreover if t = 2 then either $s \le 6$ or $(s, \psi) = (15, 9)$ holds.

Proof. Let s and ψ be positive integers satisfying $\frac{t}{2(t+1)}s < \psi \le s$, and let $\Gamma := G(s,t;\psi)$. To prove this lemma, it is enough to show that s is bounded above by a function only depending on t. If $s \le 2(t+1)^2+1$ then the result follows immediately. We now assume $s > 2(t+1)^2+1$. Then Γ is geometric by Lemma 1.1. Moreover, we have $|V(\widehat{\Gamma})| < |V(\Gamma)|$ by (12) and $s > 2(t+1)^2+1 > t$, and hence 0 is an eigenvalue of BB^T . First assume that B^TB is invertible. Then the multiplicity of eigenvalue 0 for the matrix BB^T is $|V(\Gamma)| - |V(\widehat{\Gamma})|$, which is also equal to $m_{\Gamma}(-t-1)$ by $BB^T = A_{\Gamma} + (t+1)I_{|V(\Gamma)|}$ in (11). By $m_{\Gamma}(-t-1) = |V(\Gamma)| - |V(\widehat{\Gamma})|$, (9), (10) and (13), we find

$$\psi = \frac{(s+t)(t+1)}{2t}.$$
 (14)

Substituting (14) in (13), we find

$$|V(\widehat{\Gamma})| - \left\{ (t+1)(st+1) + st^2(t-1) - t^3(t-1) \right\} = \frac{t^4(t-1)}{s+t}$$
 (15)

whose both sides are positive integers as t > 1. This shows that if $B^T B$ is invertible then we obtain $s \le t^4 (t-1) - t$.

Now assume that the matrix B^TB is singular. Then 0 is an eigenvalue of both BB^T and B^TB , and thus -s-1 is an eigenvalue of $A_{\widehat{\Gamma}}$ by $B^TB=(s+1)I_{|V(\widehat{\Gamma})|}+A_{\widehat{\Gamma}}$ in (11). As B^TB is positive semidefinite, by (11), we find that -s-1 is the smallest eigenvalue of the dual graph $\widehat{\Gamma}$ with multiplicity

$$m_{\widehat{\Gamma}}(-s-1) = |V(\widehat{\Gamma})| - |V(\Gamma)| + m_{\Gamma}(-t-1). \tag{16}$$

Since the dual graph $\widehat{\Gamma}$ of Γ is a regular graph with valency t(s+1) and smallest eigenvalue -s-1, it follows by (4) that

$$t(s+1)|V(\widehat{\Gamma})| = Tr(A_{\widehat{\Gamma}}^2) = \sum_{\eta: \text{ eigenvalue of } \widehat{\Gamma}} m_{\widehat{\Gamma}}(\eta) \eta^2 \ge t^2 (s+1)^2 + m_{\widehat{\Gamma}}(-s-1)(-s-1)^2.$$

$$(17)$$

Since we have $|V(\widehat{\Gamma})| < (t^3 + 2t^2 - 1)s + t + 1$ from (13) and the condition $\psi > \frac{t}{2(t+1)}s$,

$$1 \le p := m_{\widehat{\Gamma}}(-s-1) \le \frac{t\{|V(\widehat{\Gamma})| - t(s+1)\}}{s+1} < t^4 + 2t^3 - t^2 - t$$
 (18)

follows by (17). Hence $1 \le p < t^4 + 2t^3 - t^2 - t$. By (9), (10), (13) and (16),

$$p = m_{\widehat{\Gamma}}(-s-1) = |V(\widehat{\Gamma})| - |V(\Gamma)| + m_{\Gamma}(-t-1)$$

$$= \frac{t(s+t(s+1-2\psi+t))(2\psi(st+1)+(t^2-t)s^2)}{2\psi(2s^2+2s-2\psi(s+t)+t(2s+t+1))}.$$
(19)

By (13) and (19), we have

$$-\frac{t^{2}(t^{2}-1)s^{2}}{2\psi} - t - t^{2}(s+1) - 2(s-\psi)t^{3} + (s+1)t^{4} - t^{5} + 2(s+1-\psi)p$$

$$= \frac{(2t^{4}-2t^{2})\psi - (t^{2}-t)(t^{4}+p)}{s+t}$$
(20)

where both sides are integers. If $(2t^4-2t^2)\psi-(t^2-t)(t^4+p)=0$ then by

$$2(t+1)^2 + 1 < s < \frac{2(t+1)\psi}{t} = \frac{t^4 + p}{t^2}$$

it follows that $p > t^4 + 4t^3 + 3t^2$, a contradiction to (18). Hence the following number q is a non-zero integer, where

$$q := \frac{(2t^4 - 2t^2)\psi - (t^2 - t)(t^4 + p)}{s + t} \quad \text{and thus}$$

$$s = \left(\frac{2t^4 - 2t^2}{q}\right)\psi - \frac{(t^2 - t)(t^4 + p)}{q} - t. \tag{21}$$

By s > t, (21), $\psi > \frac{t}{2(t+1)}s$ and $p < t^4 + 2t^3 - t^2 - t$, we have

$$2sq > (s+t)q = (2t^4 - 2t^2)\psi - (t^2 - t)(t^4 + p)$$

> $st^3(t-1) - (t^2 - t)(2t^4 + 2t^3 - t^2 - t)$

and thus

$$q > \frac{t^{3}(t-1)}{2} - \frac{(t^{2}-t)(2t^{4}+2t^{3}-t^{2}-t)}{2s} > \frac{t^{3}(t-1)}{2}$$
$$-\frac{(t^{2}-t)(2t^{4}+2t^{3}-t^{2}-t)}{2t} > -t^{5}.$$
(22)

It follows by (21) and (22) that $-t^5 < q < 2t^4 - 2t^2$ as $\psi \le s < s + t$ and p is a positive integer. Substituting s of (21) to (20), we obtain a non-zero polynomial in ψ of degree at most three with coefficients as functions in p, q and t. Hence, it follows by $1 \le p < t^4 + 2t^3 - t^2 - t$, $-t^5 < q < 2t^4 - 2t^2$ and (21) that s is bounded above by a function C(t) which is dependent on t.

Now we consider the case t=2. Suppose s>6. Then Γ is geometric by Lemma 1.1. As we find $|V(\widehat{\Gamma})|<|V(\Gamma)|$ by (12) with s>t=2, BB^T is singular. If B^TB is invertible then parameters s and ψ satisfy $(s,\psi)=(14,12)$ as $\psi=\frac{3(s+2)}{4}\in\mathbb{N}$ and $\frac{16}{s+2}\in\mathbb{N}$ (see (14) and (15)). If $(s,\psi)=(14,12)$ then θ_1 and θ_2 are irrationals and thus

$$m_{\Gamma}(\theta_1) = m_{\Gamma}(\theta_2) = \frac{|V(\Gamma)| - m_{\Gamma}(\theta_0) - m_{\Gamma}(\theta_3)}{2} = \frac{135}{2} \notin \mathbb{N},$$

which is impossible. Hence B^TB is singular. It follows by (18), (21) and (22) that the following are all integers

$$p := m_{\widehat{\Gamma}}(-s - 1)$$
 and $q := \frac{24\psi - 2(p + 16)}{s + 2}$ (23)

with $1 \le p \le 25$ and $-17 < q \le 23$. Now we will show $24\psi - 2(p+16) \ne 0$ (i.e., $q \ne 0$). If $24\psi - 2(p+16) = 0$ then we find $\psi = 3$, p = 20 and $s \in \{7,8\}$ as $6 < s < 3\psi = \frac{p+16}{4} \le \frac{41}{4}$. Then it follows by (9), (10), (13) and (23) that $|V(\Gamma)| = \frac{(s+1)(s^2+6s+3)}{3}$, $m_{\Gamma}(-3) = \frac{s^2(s-2)(s^2+6s+3)}{3(s^2-3)}$, $|V(\widehat{\Gamma})| = s^2 + 6s + 3$ and $m_{\widehat{\Gamma}}(-s-1) = p = 20$. But they do not satisfy (16). Thus $24\psi - 2(p+16) \ne 0$ (i.e., $q \ne 0$). Now substituting $s = \frac{24\psi - 2(p+16) - 2q}{q}$ of (23) in (20), we find

$$2\{(p-8)q^2 - 24(p-2)q + 1728\} \psi^2 + \{q^3 + 2(p+7)q^2 + 4(p^2 + 14p - 176)q - 576(p+16)\} \psi + 24(p+q+16)^2 = 0.$$
(24)

For any integers $1 \le p \le 25$ and $-17 < q \le 23$, there exists the unique pair $(s, \psi) = (15, 9)$ satisfying $\frac{1}{3}s < \psi \le s$, (23) and (24). This shows that if s > 6 then $(s, \psi) = (15, 9)$, which completes the proof.

The incidence graph of the 2-(11, 5, 2) design (with intersection array $\{5, 4, 3; 1, 2, 5\}$) has irrational eigenvalues $\pm\sqrt{3}$. On the other hand, all the eigenvalues of the regular near hexagon (with intersection array $\{24, 22, 20; 1, 2, 12\}$) are integers. In Lemma 3.2 we will show that for a fixed integer $t \geq 2$ there exists a finite set S(t) such that if integers s and t0 satisfy both t1 satisfy both t2 described by t3.

 $(s, \psi) \notin S(t)$ then any graph $G(s, t; \psi)$ has only integral eigenvalues. Using Lemma 3.2 we can easily show that regular near hexagons with $c_2 = 2$ and $s \ge 3$ have only integral eigenvalues since if $\psi = 1$ then the set S(t) in Eq. (25) is $\{(1, 1)\}$.

Given an integer $t \ge 2$, define a set

$$S(t) := \left\{ (s, \psi) \in \mathbb{N} \times \mathbb{N} \mid F(s, \psi) = 0, \quad \psi \in \left\{ 1, 2, \dots, \left\lfloor \frac{2 + \sqrt{t^2 - t + 4}}{2} \right\rfloor \right\} \right\}, \tag{25}$$

where

$$F(s, \psi) := 2(t - 1)s^{3} + (\psi(-6t + 10) + 3t^{2} - 5t + 2)s^{2} + (4\psi^{2}(t - 4) - 2\psi(t^{2} - 3t - 2) - t^{2} + t)s + 2\psi(4\psi^{2} - 2\psi(t + 2) + t + 1).$$
(26)

For each integer ψ satisfying $1 \le \psi \le \left\lfloor \frac{2+\sqrt{t^2-t+4}}{2} \right\rfloor$, $F(s,\psi)$ is a non-zero polynomial in s of degree 3, and hence $|S(t)| \le 3 \left\lfloor \frac{2+\sqrt{t^2-t+4}}{2} \right\rfloor$.

Lemma 3.2. Let an integer $t \ge 2$ be given. If a graph $G(s,t;\psi)$ has a non-integral eigenvalue, where s,ψ are integers satisfying $1 \le \psi \le \frac{t}{2(t+1)}s$ then

$$(s, \psi) \in S(t)$$

holds, where S(t) is the finite set defined in (25).

Proof. Let $t \geq 2$ be an integer. For given integers s and ψ satisfying $1 \leq \psi \leq \frac{t}{2(t+1)}s$, let $\Gamma := G(s, t; \psi)$. Assume that Γ has a non-integral eigenvalue. Then θ_1 and θ_2 in (8) must be irrational numbers, and the equation $Tr(A_{\Gamma}) = \sum_{i=0}^{3} m_{\Gamma}(\theta_i)\theta_i = 0$ implies $m_{\Gamma}(\theta_1) = m_{\Gamma}(\theta_2)$ and thus

$$m_{\Gamma}(\theta_1) = m_{\Gamma}(\theta_2) = \frac{(t+1)(m_{\Gamma}(\theta_3) - s)}{3s - 2yt - 1} = \frac{|V(\Gamma)| - 1 - m_{\Gamma}(\theta_3)}{2}$$
(27)

follows by (8) and $|V(\Gamma)| = \sum_{i=0}^{3} m_{\Gamma}(\theta_i)$. By substituting (9) and (10) in (27), we find that s and ψ must satisfy the equation $F(s, \psi) = 0$, see (26). To complete the proof, we need to show $1 \le \psi \le \left\lfloor \frac{2+\sqrt{t^2-t+4}}{2} \right\rfloor$ (i.e., $(s, \psi) \in S$). We first show the following claim.

Claim 3.3. Suppose $F(s, \psi) = 0$. If $\frac{1}{2}(2 + \sqrt{t^2 - t + 4}) < \psi \le \frac{t}{2(t+1)}s$ then $s < 2\psi$.

Proof of Claim 3.3. Suppose $\psi > \frac{1}{2}(2+\sqrt{t^2-t+4})$. As $\psi > \frac{1}{2}(2+\sqrt{t^2-t+4}) > \frac{1}{2}(t+1)$, $F(0,\psi) = 2\psi(2\psi-1)(2\psi-(t+1)) > 0$ and thus there is s < 0 satisfying $F(s,\psi) = 0$. As $F(2\psi,\psi) = 2\psi\{(4t^2-6t+4)\psi-t^2+2t+1\} > 0$ and the largest zero of the equation $\frac{\partial}{\partial s}F(s,\psi) = 0$ in s is

$$\frac{6\psi t - 3t^2 + 5t - 10\psi - 2 + \sqrt{(12t^2 + 4)\psi^2 + (-24t^3 + 72t^2 - 112t + 64)\psi + 9t^4 - 24t^3 + 25t^2 - 14t + 44)\psi^2 + (-24t^3 + 72t^2 - 112t + 64)\psi + 9t^4 - 24t^3 + 25t^2 - 14t + 44}{6(t-1)}$$

which is less than 2ψ , it follows that each real number s satisfying $F(s, \psi) = 0$ is less than 2ψ . This shows Claim 3.3.

As the condition $\psi \leq \frac{t}{2(t+1)}s$ implies $2\psi \leq \left(\frac{t}{t+1}\right)s < s$, we find by Claim 3.3 that if θ_1 and θ_2 are irrational numbers then $F(s,\psi)=0$ holds and thus ψ must satisfy

$$\psi \le \frac{1}{2}(2 + \sqrt{t^2 - t + 4}),$$

which shows $(s, \psi) \in S$. This completes the proof.

Using Lemmas 3.1 and 3.2 we now prove Theorem 1.2, which means that given an integer $t \ge 2$ there are only finitely many s's and ψ 's such that a graph $G(s,t;\psi)$ exists with $(t,\psi) \ne (2,1)$. It is known that a G(s,2;1) with $s \ge 1$ is either the Hamming graph H(3,s+1) or the Doob graph with diameter three (in this case s=3), see [6, Corollary 9.2.5]. Since the Hamming graph H(3,s+1) with $s \ge 1$ is a G(s,2;1), it follows that for the pair $(t,\psi)=(2,1)$ there are infinitely many s's such that a G(s,2;1) exists.

Proof of Theorem 1.2. Let $t \ge 2$ be a given integer. Let s and ψ be integers such that $1 \le \psi \le s$ and $(t, \psi) \ne (2, 1)$. We want to show that there exists a positive constant C = C(t) (only depending on t) such that if a graph $\Gamma = G(s, t; \psi)$ exists then $s \le C$. We consider two cases, $\psi > \frac{t}{2(t+1)}s$ and $\psi \le \frac{t}{2(t+1)}s$. In the first case the existence of the constant C follows from Lemma 3.1. In the case $\psi \le \frac{t}{2(t+1)}s$, let S = S(t) be the set as defined in (25). To complete the proof for given $t \ge 2$ and $(s, \psi) \not\in S$ satisfying $1 \le \psi \le s$, $(t, \psi) \ne (2, 1)$ and $\psi \le \frac{t}{2(t+1)}s$, we will show that s is bounded above by a function in t. It follows by Lemma 3.2 that if $(s, \psi) \not\in S$ then both θ_1 and θ_2 are integers and thus $\sqrt{(s+1-2\psi)^2+4(t-1)s}=\theta_1-\theta_2=(s+1-2\psi)+r$, where t is a positive integer. As $\psi \le \frac{t}{2(t+1)}s$ we find $1 < r < 2(t^2-1)$. It follows that

$$\psi = \left(\frac{r - 2t + 2}{2r}\right)s + \frac{r + 2}{4} \tag{28}$$

where $1 \le r < 2(t^2 - 1)$. Substituting (28) into (9) we find

$$4(r-2t+2)^{3} \{|V(\Gamma)| - (s+1)(st+1)\} - r^{3}(r+2)^{2}(t^{2}-t)$$

$$-2r(s+1)(t^{2}-t)(r-2t+2) \{2(r-2t+2)s-r^{2}-2r\}$$

$$= \frac{r^{3}(r+2)^{2}(t^{2}-t)(r^{2}+4t-4)}{-(2r-4t+4)s-r(r+2)}$$
(29)

where both sides are integers. Note here that $-(2r-4t+4)s-r(r+2)=-4r\psi\neq 0$ where the first equality follows from (28). If $2r-4t+4\neq 0$ then $s\leq r^3(r+2)^2(t^2-t)(r^2+4t-4)+r(r+2)\leq f(t)$ holds as the absolute value of (29) is at least 1. If 2r-4t+4=0, i.e., r=2(t-1), then $t=2\psi$ by (28). Moreover, by (10),

$$4m_{\Gamma}(\theta_3) - \left\{4(t-1)s^3 - 4t(t-2)s^2 + 2(t^2-1)(t-2)s - t(t^2-1)(t-2)\right\}$$

$$= \frac{t^2(t-2)(t^2-1)}{2s+t}$$

must be an integer. Since t=2 implies $\psi=1$, we have t>2. Then there are only finitely many positive integers s such that $\frac{t^2(t-2)(t^2-1)}{2s+t}$ is an integer. Hence we showed that if $(s,\psi)\not\in S$, $(t,\psi)\neq (2,1)$ and $\psi\leq \frac{t}{2(t+1)}s$ both hold then s is bounded above by a certain function only depending on t.

This completes the proof since *S* is a finite set with $|S| \le \left\lfloor \frac{3(2+\sqrt{t^2-t+4})}{2} \right\rfloor$ and each *s* and ψ satisfying $(s, \psi) \in S$ are bounded above by a function on *t* from the definition of the set *S* (see (25)).

Mohar and Shawe-Taylor [14] (see also [6, Theorem 4.2.16]) characterized distance-regular graphs of order (s,1) with s>1. The distance-regular graphs of order (1,2) and (2,2) were classified by Biggs, Boshier and Shawe-Taylor [5] and Hiraki, Nomura and Suzuki [12], respectively. Some strong results on distance-regular graphs of order (s,2) with s>2 were given by Yamazaki [16]. In [2, Corollary 10.2], the authors showed that for a fixed integer t>1, there are only finitely many distance-regular graphs of order (s,t) whose smallest eigenvalue is not equal to -t-1.

Using Theorem 1.2, we can show the following theorem.

Theorem 3.4. For a fixed integer $t \ge 2$, there are only finitely many distance-regular graphs of order (s,t) with smallest eigenvalue -t-1, diameter D=3 and intersection number $c_2=2$ except for Hamming graphs with diameter three.

Proof. Let $t \geq 2$ be a given integer. Let Γ be a distance-regular graph of order (s,t) with smallest eigenvalue -t-1, diameter D=3 and intersection number $c_2=2$. Then Γ is geometric with valency $b_0=(t+1)s$. By [1, Lemma 4.1] (see also [3, Proposition 4.2 (i)]), the intersection numbers of Γ satisfy $b_i=(t+1-\tau_i)(s+1-\psi_i)$ i=1,2 and $c_j=\tau_j\psi_{j-1}$ j=1,2,3, where parameters τ_i and ψ_i are as defined in [1, Section 4]. As any Delsarte clique in Γ has size $s+1=a_1+2$, it follows by [3, Lemma 5.1 (i)] that $\psi_1=1$ which shows $\tau_2=\tau_2\psi_1=c_2=2$. Note here that Γ satisfies $\tau_1=1$ and $\tau_3=t+1$ (see [1, Equation (9)]). Put $\psi:=\psi_2$. Then Γ is a $G(s,t;\psi)$. If $s\neq 3$ then the condition $(t,\psi)=(2,1)$ is equivalent to that Γ is the Hamming graph H(3,s+1). As $b_0=(t+1)s$ and D=3, the result follows by Theorem 1.2.

In [13, Conjecture 7.5], the authors conjectured that for a fixed integer $t \ge 2$, any geometric distance-regular graph with smallest eigenvalue -t-1, diameter $D \ge 3$ and $c_2 \ge 2$ is either a Johnson graph, a Grassmann graph, a Hamming graph, a bilinear forms graph, or the number of vertices is bounded above by a function in t. Theorem 3.4 gives us more evidence that the conjecture is true.

4. Proof of Theorem 1.3

For given integers s and ψ with $1 \le \psi \le s$, let $\Gamma = G(s, 2; \psi)$. Then $\iota(\Gamma) = \{3s, 2s, s+1-\psi; 1, 2, 3\psi\}$. If $\psi = 1$ then $G(s, 2; \psi)$ is either the Hamming graph H(3, s+1) or the Doob graph with diameter three (in this case s=3), see [6, Corollary 9.2.5]. If $\psi = s$ then $G(s, 2; \psi)$ can be obtained as the collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges in a spread, where $s \in \{3, 5\}$ (see [1, Theorem 4.3]). In this section, we prove Theorem 1.3 which states that if a graph $G(s, 2; \psi)$ exists, where s and ψ are integers with $1 < \psi < s$ then $(s, \psi) = (15, 9)$. To prove Theorem 1.3, we need the following lemma.

Lemma 4.1. Let s and ψ be any given integers with $1 < \psi < s$. If a graph $G(s, 2; \psi)$ exists then

$$\psi > \frac{1}{3}s$$

holds.

Proof. Assume that a graph $\Gamma:=G(s,2;\psi)$ exists and $\psi\leq\frac{1}{3}s$. By Lemma 3.2 with t=2, all the eigenvalues of Γ are integers as the set $S=\{(s,2)\in\mathbb{N}\times\mathbb{N}\mid F(s,2)=0\}$ in (25) is empty. As $s+1-2\psi>0$ holds from the assumption $\psi\leq\frac{1}{3}s$, we find by (8) that

$$\theta_1 - \theta_2 = \sqrt{(s+1-2\psi)^2 + 4s} = (s+1-2\psi) + r \quad \text{and thus}$$

$$\psi = \frac{(2r-4)s + r^2 + 2r}{4r}$$
(30)

for some positive integer r. As $\psi=\frac{(2r-4)s+r^2+2r}{4r}$ is an integer with $1<\psi\leq\frac{1}{3}s$, we find r=4 and $s\geq 18$. Thus Γ is geometric by Lemma 1.1. Since the numbers $\psi=\frac{s+6}{4},|V(\widehat{\Gamma})|=18s-69+\frac{432}{s+6}$ and

$$4(r-2)^{3} \{|V(\Gamma)| - (s+1)(2s+1)\} - 2r^{3}(r+2)^{2}$$

$$-4r(s+1)(r-2) \{2(r-2)s - r^{2} - 2r\}$$

$$= \frac{-2r^{3}(r+2)^{2}(r^{2}+4)}{(2r-4)s+r^{2}+2r} = \frac{-23040}{s+6}$$
(31)

must be integers (see (9), (13) and (30)), s must satisfy

$$\frac{s+6}{4} \in \mathbb{N} \quad \text{and} \quad \frac{144}{s+6} \in \mathbb{N}$$
 (32)

where $144 = \gcd(432, 23040)$. Since $s \ge 18$ also holds, we find by (32) that $s \in \{18, 30, 42, 66, 138\}$. But now $m_{\Gamma}(-3) = \frac{s(3s-2)(3s+2)(2s+3)}{(s+6)(3s+4)}$ is not a positive integer for any $s \in \{18, 30, 42, 66, 138\}$ (see (10)). Hence $\psi > \frac{1}{3}s$ follows.

Proof of Theorem 1.3. For any given integers s and ψ with $1 < \psi < s$, let $\Gamma := G(s, 2; \psi)$. As $\psi > \frac{1}{3}s$ holds by Lemma 4.1, it follows by Lemma 3.1 that either $s \le 6$ or $(s, \psi) = (15, 9)$ holds. Since there are no integers $s \le 6$ and ψ satisfying both $\frac{1}{3}s < \psi < s$ and $m_{\Gamma}(\theta_3) \in \mathbb{N}$ (see (10)), we find $(s, \psi) = (15, 9)$ which completes the proof.

Acknowledgments

Sejeong Bang was supported by Yeungnam University research grants in 2011. Jack Koolen was partially supported by a grant of the 'One hundred talent program' of the Chinese government.

References

- [1] S. Bang, Geometric distance-regular graphs without 4-claws, Linear Algebra Appl. 438 (2013) 37-46.
- [2] S. Bang, A. Dubickas, J.H. Koolen, V. Moulton, There are only finitely many distance-regular graphs of given valency greater than two, 2009, arXiv:0909.5253v1, submitted for publication.
- [3] S. Bang, A. Hiraki, J.H. Koolen, Delsarte clique graphs, European J. Combin. 28 (2007) 501-516.
- [4] N. Biggs, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993.
- [5] N.L. Biggs, A.G. Boshier, J. Shawe-Taylor, Cubic distance-regular graphs, J. Lond. Math. Soc. 33 (1986) 385-394.
- [6] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- [7] B. De Bruyn, F. Vanhove, On Q-polynomial regular near 2d-gons, submitted for publication.
- [8] Edwin R. van Dam, Jack H. Koolen, Hajime Tanaka, Distance-regular graphs, https://sites.google.com/site/edwinrvandam/pub, Unpublished manuscript.
- [9] A.L. Gavrilyuk, A.A. Makhnev, Distance-regular graph with intersection array {45, 30, 7; 1, 2, 27} does not exist, Discrete Math. Appl. (2013) in press.
- [10] C.D. Godsil, Geometric distance-regular covers, New Zealand J. Math. 22 (1993) 31–38.
- 11 A. Hiraki, J. Koolen, A Higman–Haemers inequality for thick regular near polygons, J. Algebraic Combin. 20 (2004) 213–218.
- [12] A. Hiraki, K. Nomura, H. Suzuki, Distance-regular graphs of valency 6 and $a_1 = 1$, J. Algebraic Combin. 11 (2000) 101–134.
- [13] J.H. Koolen, S. Bang, On distance-regular graphs with smallest eigenvalue at least -m, J. Combin. Theory Ser. B 100 (2010) 573-584
- 573–584.
 [14] B. Mohar, J. Shawe-Taylor, Distance-biregular graphs with 2-valent vertices and distance regular line graphs, J. Combin. Theory Ser. B 38 (1985) 193–203.
- [15] S. Shad, E. Shult, The near *n*-gon geometries, Unpublished manuscript.
- [16] N. Yamazaki, Distance-regular graphs with $G(x) \simeq 3 * K_{a+1}$, European J. Combin. 16 (1995) 525–536.