On geometric distance-regular graphs with diameter three

Sejeong Bang ${ }^{\text {a,1 }}$, J.H. Koolen ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Mathematics, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, PR China
${ }^{\text {c }}$ Department of Mathematics, POSTECH, Hyoja-dong, Namgu, Pohang 790-784, Republic of Korea

ARTICLE INFO

Article history:

Received 6 February 2013
Accepted 19 June 2013
Available online 28 August 2013

A B S TRACT

In this paper we study distance-regular graphs with intersection array

$$
\begin{equation*}
\{(t+1) s, t s,(t-1)(s+1-\psi) ; 1,2,(t+1) \psi\} \tag{1}
\end{equation*}
$$

where s, t, ψ are integers satisfying $t \geq 2$ and $1 \leq \psi \leq s$. Geometric distance-regular graphs with diameter three and $c_{2}=2$ have such an intersection array. We first show that if a distance-regular graph with intersection array (1) exists, then s is bounded above by a function in t. Using this we show that for a fixed integer $t \geq 2$, there are only finitely many distance-regular graphs of order (s, t) with smallest eigenvalue $-t-1$, diameter $D=3$ and intersection number $c_{2}=2$ except for Hamming graphs with diameter three. Moreover, we will show that if a distance-regular graph with intersection array (1) for $t=2$ exists then $(s, \psi)=(15,9)$. As Gavrilyuk and Makhnev (2013) [9] proved that the case $(s, \psi)=(15,9)$ does not exist, this enables us to finish the classification of geometric distance-regular graphs with smallest eigenvalue -3 , diameter $D \geq 3$ and $c_{2} \geq 2$ which was started by the first author (Bang, 2013) [1].
© 2013 Elsevier Ltd. All rights reserved.

[^0]
1. Introduction

For unexplained definitions and notations the reader is referred to Section 2. Recall that a noncomplete distance-regular graph Γ with valency k and smallest eigenvalue $\theta_{\text {min }}$ is called geometric if there exists a set \mathcal{C} of cliques such that each edge lies in exactly one clique in \mathcal{C} and each clique in \mathcal{C} is a Delsarte clique, i.e., a clique of exactly $1+k /\left(-\theta_{\min }\right)$ vertices (see [10]). So a geometric distanceregular graph is the point graph of a partial linear space where the set of lines is a set of Delsarte cliques. It was shown in [13] that for a positive integer $m \geq 2$ there are only finitely many coconnected distance-regular graphs with valency at least three and smallest eigenvalue at least $-m$ that are not geometric.

In this paper we study geometric distance-regular graphs with diameter three. A geometric distance-regular graph with diameter three has intersection array

$$
\begin{equation*}
\left\{(t+1) s, t\left(s+1-\psi_{1}\right),\left(t-t_{2}\right)\left(s+1-\psi_{2}\right) ; 1,\left(t_{2}+1\right) \psi_{1},(t+1) \psi_{2}\right\} \tag{2}
\end{equation*}
$$

where $0 \leq t_{2}<t$ and $1 \leq \psi_{1} \leq \psi_{2} \leq s$ are all integers (see [13, Lemma 4.1]). Examples of geometric distance-regular graphs with diameter three are the Hamming graph $H(3, q)$, the Johnson graph $J(n, 3) n \geq 6$, the Grassmann graph $J_{q}(n, 3) n \geq 6$, the bilinear forms graph $H_{q}(n, 3)$ and so on. Note that not every distance-regular graph with intersection array (2) is geometric. For example, the Doob graph with diameter three (i.e., the Cartesian product of a Shrikhande graph with a complete graph on 4 vertices), which is not geometric, has the same intersection array as the Hamming graph $H(3,4)$.

A distance-regular graph is exactly a generalized hexagon if and only if it has intersection array (2) with $t_{2}=0$ and $\psi_{1}=\psi_{2}=1$. A regular near hexagon is exactly a graph with intersection array (2) and $\psi_{1}=\psi_{2}=1$ that is locally the disjoint union of cliques. For larger diameter, the regular near $2 D$-gons of order (s, t) with $D \geq 4, c_{2} \geq 3$ and $s \geq 2$ are exactly dual polar graphs, see [8 , Theorem 9.11]. The case satisfying $D \geq 4, c_{2}=2$ and $s \geq 2$ is still open. Regular near hexagons are even less known, see [7] for some recent progress. In this paper we will consider graphs with intersection array (2) satisfying $c_{2}=2$ and $s \geq 1$. In this case it follows by [13 , Lemma 4.2 (i)] that $t_{2}=1$ and $\psi_{1}=1$.

For positive integers s, t, ψ satisfying $t \geq 2$ and $\psi \leq s$, we denote by $G(s, t ; \psi)$ a distance-regular graph with intersection array

$$
\begin{equation*}
\{(t+1) s, t s,(t-1)(s+1-\psi) ; 1,2,(t+1) \psi\} . \tag{3}
\end{equation*}
$$

Although a graph $G(s, t ; \psi)$ is not necessarily geometric the following lemma shows that it usually is.

Lemma 1.1. Let $\Gamma=G(s, t ; \psi)$ be a distance-regular graph with intersection array (3), where s, t, ψ are integers satisfying $t \geq 2$ and $1 \leq \psi \leq s$. If parameters s and t satisfy

$$
s> \begin{cases}2(t+1)^{2}+1 & \text { if } t \geq 3 \\ 6 & \text { if } t=2\end{cases}
$$

then Γ is geometric with smallest eigenvalue $-t-1$.
Proof. Note that $-t-1$ is the smallest eigenvalue of Γ. If parameters s and t satisfy $t \geq 3$ and $s>$ $2(t+1)^{2}+1$, then Γ is geometric with smallest eigenvalue $-t-1$ by [13, Theorem 5.3]. If $s>6$ and $t=2$, then the result immediately follows by [1, Theorem 3.1].

It was shown in [11, Corollary 2] that for a thick regular near $2 D$-gon with order (s, t), the number t is bounded by a function in s and D, i.e., $t<s^{\frac{4 D}{h}}-1$ where $h:=\max \left\{i \mid\left(c_{i}, a_{i}, b_{i}\right)=\left(c_{1}, a_{1}, b_{1}\right)\right\}$. With the same proof, it can be shown that this bound also holds for geometric distance-regular graphs. We will show in the next theorem that if Γ is a $G(s, t ; \psi)$ then s is bounded by a function in t, which gives us a dual result to the result of Hiraki and Koolen [11, Corollary 2].

Theorem 1.2. Let an integer $t \geq 2$ be given. Then there exists a positive constant $C:=C(t)$ (only depending on t) such that if a graph $G(s, t ; \psi)$ exists where s, ψ are integers satisfying $1 \leq \psi \leq s$ and $(t, \psi) \neq(2,1)$ then
$s \leq C$
holds (and hence $\psi \leq \mathrm{C}$).
To prove this result we show that usually a graph $G(s, t ; \psi)$ has only integral eigenvalues (see Lemma 3.2). This situation is similar to the case of regular near hexagons. It was shown by Shad and Shult [15] that a regular near hexagon has integral spectrum unless it is a generalized hexagon. However, the graph $G(1,5 ; 1)$ with intersection array $\{5,4,3 ; 1,2,5\}$, which arises as the point-block incidence graph of the square 2 -($11,5,2$)-design, has irrational eigenvalues $\pm \sqrt{3}$.

It is known that there are no geometric distance-regular graphs with smallest eigenvalue -2 , diameter $D \geq 3$ and $c_{2} \geq 2$ (see [6 , Theorem 3.12.2, Theorem 4.2.16]). Bang [1 , Theorem 4.3] has shown that any geometric distance-regular graph Γ with smallest eigenvalue -3 , diameter $D \geq 3$ and $c_{2} \geq 2$ satisfies one of the following:
(a) The Hamming graph $H(3, s+1)$, where $s \geq 2$.
(b) The Johnson graph $J(s-1,3)$, where $s \geq 7$.
(c) The collinearity graph of the generalized quadrangle of order $(s, 3)$ deleting the edges in a spread, where $s \in\{3,5\}$.
(d) $\Gamma=G(s, 2 ; \psi)$ with intersection array $\{3 s, 2 s, s+1-\psi ; 1,2,3 \psi\}$, where $1<\psi<s$.

We will show in Theorem 1.3 that if a graph $G(s, 2 ; \psi)$ exists, where s and ψ are integers with $1<$ $\psi<s$, then $(s, \psi)=(15,9)$.

Theorem 1.3. For any given integers s and ψ with $1<\psi<s$, if a distance-regular graph with intersection array $\{3 s, 2 s, s+1-\psi ; 1,2,3 \psi\}$ does exist then $(s, \psi)=(15,9)$.

As Gavrilyuk and Makhnev [9] proved that a $G(15,2 ; 9)$ (with intersection array $\{45,30,7 ; 1,2,27\}$) does not exist, we have the following result.

Theorem 1.4. A geometric distance-regular graph with smallest eigenvalue -3 , diameter $D \geq 3$ and $c_{2} \geq 2$ is one of the following.
(i) The Hamming graph $H(3, s+1)$, where $s \geq 2$.
(ii) The Johnson graph $J(s-1,3)$, where $s \geq 7$.
(iii) The collinearity graph of the generalized quadrangle of order $(s, 3)$ deleting the edges in a spread, where $s \in\{3,5\}$.

In Section 3, we prove Theorem 1.2. To show this result we consider the two cases, $\psi>\frac{t}{2(t+1)} s$ and $\psi \leq \frac{t}{2(t+1)} s$. If $\psi>\frac{t}{2(t+1)} s$ then we prove Lemma 3.1 by showing that the multiplicity of the smallest eigenvalue of the corresponding dual graph is bounded above by a function in t. In this case s is also bounded above by a function in t. On the other hand, if $\psi \leq \frac{t}{2(t+1)} s$ then we prove in Lemma 3.2 that there exists a finite set S such that if $(s, \psi) \notin S$ then any graph $G(s, t ; \psi)$ has only integral eigenvalues. Using Theorem 1.2, we show in Theorem 3.4 that for a fixed integer $t \geq 2$, there are only finitely many distance-regular graphs of order (s, t) with smallest eigenvalue $-t-1$, diameter $D=3$ and intersection number $c_{2}=2$ except for the Hamming graphs with diameter three. In Section 4, we prove Theorem 1.3 by showing in Lemma 4.1 that $\psi \leq \frac{1}{3} s$ does not occur.

2. Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [6] for more background information. For a connected graph Γ, the distance $d(x, y)$ between two vertices x, y of Γ is the length of a shortest path between x and y in Γ, and the diameter D is the maximum distance between any two vertices of Γ. Let $V(\Gamma)$ be the vertex set of Γ. For any vertex $x \in V(\Gamma)$, let $\Gamma_{i}(x)$ be the set of vertices in Γ at distance precisely i from x, where i is a non-negative integer not exceeding D. The adjacency matrix A_{Γ} of a graph Γ is the $(|V(\Gamma)| \times|V(\Gamma)|)$-matrix with rows and columns indexed by $V(\Gamma)$, where the (x, y)-entry of A_{Γ} equals 1 whenever $d(x, y)=1$ and 0 otherwise. The eigenvalues of Γ are the eigenvalues of A_{Γ}. Let $\theta_{0}, \theta_{1}, \ldots, \theta_{n}$ be the distinct eigenvalues of Γ and let $m_{\Gamma}\left(\theta_{i}\right)$ be the multiplicity of $\theta_{i}(i=0,1, \ldots, n)$. A sequence of vertices $W=w_{0}, w_{1}, \ldots, w_{\ell}$, which are not necessarily mutually distinct, is called a walk of length ℓ if w_{i} and w_{i+1} are adjacent for each $i=0, \ldots, \ell-1$. The number of walks of length ℓ from x to y is given by $\left(A_{\Gamma}^{\ell}\right)_{(x, y)}$, where $\left(A_{\Gamma}^{\ell}\right)_{(x, y)}$ is the (x, y)-entry of matrix A_{Γ}^{ℓ}. If $w_{0}=w_{\ell}$ then W is called a closed walk. Let $\operatorname{Tr}\left(A_{\Gamma}^{\ell}\right)$ denote the trace of A_{Γ}^{ℓ} (i.e., the sum of the diagonal entries of A_{Γ}^{ℓ}). Then we have

$$
\begin{equation*}
\sum_{i=0}^{n} m_{\Gamma}\left(\theta_{i}\right) \theta_{i}^{\ell}=\operatorname{Tr}\left(A_{\Gamma}^{\ell}\right)=\text { the number of closed walks of length } \ell \text { in } \Gamma \quad(\ell \geq 1) . \tag{4}
\end{equation*}
$$

A connected graph Γ is called a distance-regular graph if there exist integers $b_{i}, c_{i}, i=0,1, \ldots, D$, such that for any two vertices x, y at distance $i=d(x, y)$, there are precisely c_{i} neighbors of y in $\Gamma_{i-1}(x)$ and b_{i} neighbors of y in $\Gamma_{i+1}(x)$ where D is the diameter of Γ. In particular, Γ is regular with valency $k:=b_{0}$. The numbers b_{i}, c_{i} and $a_{i}:=k-b_{i}-c_{i}(0 \leq i \leq D)$ are called the intersection numbers of Γ. Set $c_{0}=b_{D}=0$. We observe $a_{0}=0$ and $c_{1}=1$. Array

$$
\iota(\Gamma)=\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\}
$$

is called the intersection array of Γ. We define $k_{i}:=\left|\Gamma_{i}(x)\right|$ for any vertex x and $i=0,1, \ldots, D$. Then we have

$$
\begin{equation*}
k_{0}=1, \quad k_{1}=b_{0}, \quad k_{i+1}=\frac{k_{i} b_{i}}{c_{i+1}} \quad(i=0,1, \ldots, D-1) . \tag{5}
\end{equation*}
$$

Suppose that Γ is a distance-regular graph with valency $k \geq 2$ and diameter $D \geq 2$. It is well known that Γ has exactly $D+1$ distinct eigenvalues which are the eigenvalues of the following tridiagonal matrix

$$
L_{1}(\Gamma):=\left(\begin{array}{llllllll}
0 & b_{0} & & & & & & \tag{6}\\
c_{1} & a_{1} & b_{1} & & & & & \\
& c_{2} & a_{2} & b_{2} & & & & \\
& & \cdot & \cdot & \cdot & & & \\
& & & c_{i} & a_{i} & b_{i} & & \\
& & & & \cdot & c_{D-1} & a_{D-1} & b_{D-1} \\
& & & & & & c_{D} & a_{D}
\end{array}\right)
$$

(cf. [6, p.128]). The standard sequence $\left(u_{i}(\theta)\right)_{0 \leq i \leq D}$ corresponding to an eigenvalue θ of Γ is a sequence satisfying the following recurrence relation:

$$
u_{0}(\theta)=1, \quad u_{1}(\theta)=\frac{\theta}{k}, \quad c_{i} u_{i-1}(\theta)+a_{i} u_{i}(\theta)+b_{i} u_{i+1}(\theta)=\theta u_{i}(\theta) \quad(1 \leq i \leq D) .
$$

Then the multiplicity of the eigenvalue θ is given by

$$
\begin{equation*}
m_{\Gamma}(\theta)=\frac{|V(\Gamma)|}{\sum_{i=0}^{D} k_{i} u_{i}^{2}(\theta)} \tag{7}
\end{equation*}
$$

which is known as Biggs' formula (cf. [4, Theorem 21.4], [6, p.128]). Let \mathbb{N} denote the set of positive integers. Recall that the local graph of a vertex x is the subgraph of Γ induced by the set of neighbors of x in Γ, and a clique is a set of pairwise adjacent vertices. A distance-regular graph is of order (s, t) if the local graph of any vertex is the disjoint union of $t+1$ cliques of size s for some positive integers s, t. A distance-regular graph of order (s, t) is called a regular near $2 D$-gon of order (s, t) if $a_{i}=$ $c_{i}(s-1)(i=1,2, \ldots, D)$.

3. Proof of Theorem 1.2

In this section we will show Theorem 1.2 , which implies that for any given integer $t \geq 2$ there exists a positive constant $C:=C(t)$ such that if $s>C$ and a graph $G(s, t ; \psi)$ exists then $(t, \psi)=(2,1)$. To show Theorem 1.2 we consider the two cases, $\psi>\frac{t}{2(t+1)} s$ and $\psi \leq \frac{t}{2(t+1)} s$. If $\psi>\frac{t}{2(t+1)} s$ then we prove Lemma 3.1 by showing that the multiplicity of the smallest eigenvalue of the corresponding dual graph is bounded above by a function in t. In this case s is bounded above by a function in t. On the other hand, if $\psi \leq \frac{t}{2(t+1)} s$ then we prove in Lemma 3.2 that there exists a finite set S such that if $(s, \psi) \notin S$ then any graph $G(s, t ; \psi)$ has only integral eigenvalues.

For given integers s, t, ψ with $t \geq 2$ and $1 \leq \psi \leq s$, let $\Gamma:=G(s, t ; \psi)$. By (6), Γ has exactly four distinct eigenvalues $\theta_{0}>\theta_{1}>\theta_{2}>\theta_{3}$:

$$
\begin{align*}
& \theta_{0}=(t+1) s, \quad \theta_{i}=\frac{3 s-2 \psi-1+(-1)^{i-1} \sqrt{(s+1-2 \psi)^{2}+4(t-1) s}}{2} \quad(i=1,2), \tag{8}\\
& \theta_{3}=-t-1 .
\end{align*}
$$

By (5) and (7), we find

$$
\begin{equation*}
|V(\Gamma)|=\frac{(s+1)\left\{\left(t^{2}-t\right) s^{2}+2 \psi(s t+1)\right\}}{2 \psi} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{\Gamma}\left(\theta_{3}\right)=m_{\Gamma}(-t-1)=\frac{s^{2}(s+1-\psi)\left\{\left(t^{2}-t\right) s^{2}+2 \psi(s t+1)\right\}}{\psi\left(2 s^{2}+2 s-2 \psi s+2 s t+t^{2}+t-2 \psi t\right)} . \tag{10}
\end{equation*}
$$

Suppose that Γ is geometric. The dual graph of Γ, denoted by $\widehat{\Gamma}$, is the graph whose vertices are the Delsarte cliques of Γ (i.e., cliques of size $s+1$) and two Delsarte cliques are adjacent if they intersect. Let B be the vertex-(Delsarte clique) incidence matrix (i.e., the (0,1)-matrix with rows and columns indexed by the vertex set and the set of Delsarte cliques respectively, where the (x, C)-entry of B is 1 if the vertex x is contained in the Delsarte clique C and 0 otherwise). Then

$$
\begin{equation*}
B B^{T}=A_{\Gamma}+(t+1) I_{|V(\Gamma)|} \quad \text { and } \quad B^{T} B=(s+1) I_{|V(\widehat{\Gamma})|}+A_{\widehat{\Gamma}}, \tag{11}
\end{equation*}
$$

where B^{T} is the transpose of B and I_{v} is the $v \times v$ identity matrix. By double-counting the number of ones in B, we find

$$
\begin{equation*}
|V(\widehat{\Gamma})|(s+1)=|V(\Gamma)|(t+1) \tag{12}
\end{equation*}
$$

and thus

$$
\begin{equation*}
|V(\widehat{\Gamma})|=(t+1)(s t+1)+\frac{t\left(t^{2}-1\right) s^{2}}{2 \psi} \tag{13}
\end{equation*}
$$

In particular, $\widehat{\Gamma}$ is a regular graph with valency $t(s+1)$.
Lemma 3.1. Let an integer $t \geq 2$ be given. Then there exists a positive constant $C:=C(t)$ (only depending on t) such that if a graph $G(s, t ; \psi)$ exists where s, ψ are integers satisfying $1 \leq \psi \leq s$ and $\frac{t}{2(t+1)} s<\psi \leq s$ then

$$
s \leq C
$$

holds.
Moreover if $t=2$ then either $s \leq 6$ or $(s, \psi)=(15,9)$ holds.

Proof. Let s and ψ be positive integers satisfying $\frac{t}{2(t+1)} s<\psi \leq s$, and let $\Gamma:=G(s, t ; \psi)$. To prove this lemma, it is enough to show that s is bounded above by a function only depending on t. If $s \leq$ $2(t+1)^{2}+1$ then the result follows immediately. We now assume $s>2(t+1)^{2}+1$. Then Γ is geometric by Lemma 1.1. Moreover, we have $|V(\widehat{\Gamma})|<|V(\Gamma)|$ by (12) and $s>2(t+1)^{2}+1>t$, and hence 0 is an eigenvalue of $B B^{T}$. First assume that $B^{T} B$ is invertible. Then the multiplicity of eigenvalue 0 for the matrix $B B^{T}$ is $|V(\Gamma)|-|V(\widehat{\Gamma})|$, which is also equal to $m_{\Gamma}(-t-1)$ by $B B^{T}=A_{\Gamma}+(t+1) I_{|V(\Gamma)|}$ in (11). By $m_{\Gamma}(-t-1)=|V(\Gamma)|-|V(\widehat{\Gamma})|,(9),(10)$ and (13), we find

$$
\begin{equation*}
\psi=\frac{(s+t)(t+1)}{2 t} \tag{14}
\end{equation*}
$$

Substituting (14) in (13), we find

$$
\begin{equation*}
|V(\widehat{\Gamma})|-\left\{(t+1)(s t+1)+s t^{2}(t-1)-t^{3}(t-1)\right\}=\frac{t^{4}(t-1)}{s+t} \tag{15}
\end{equation*}
$$

whose both sides are positive integers as $t>1$. This shows that if $B^{T} B$ is invertible then we obtain $s \leq t^{4}(t-1)-t$.

Now assume that the matrix $B^{T} B$ is singular. Then 0 is an eigenvalue of both $B B^{T}$ and $B^{T} B$, and thus $-s-1$ is an eigenvalue of $A_{\widehat{\Gamma}}$ by $B^{T} B=(s+1) I_{|V(\widehat{\Gamma})|}+A_{\widehat{\Gamma}}$ in (11). As $B^{T} B$ is positive semidefinite, by (11), we find that $-s-1$ is the smallest eigenvalue of the dual graph $\widehat{\Gamma}$ with multiplicity

$$
\begin{equation*}
m_{\widehat{\Gamma}}(-s-1)=|V(\widehat{\Gamma})|-|V(\Gamma)|+m_{\Gamma}(-t-1) \tag{16}
\end{equation*}
$$

Since the dual graph $\widehat{\Gamma}$ of Γ is a regular graph with valency $t(s+1)$ and smallest eigenvalue $-s-1$, it follows by (4) that

$$
\begin{align*}
t(s+1)|V(\widehat{\Gamma})|= & \operatorname{Tr}\left(A_{\widehat{\Gamma}}^{2}\right)=\sum_{\eta: \text { eigenvalue of } \widehat{\Gamma}} m_{\widehat{\Gamma}}(\eta) \eta^{2} \geq t^{2}(s+1)^{2} \\
& +m_{\widehat{\Gamma}}(-s-1)(-s-1)^{2} \tag{17}
\end{align*}
$$

Since we have $|V(\widehat{\Gamma})|<\left(t^{3}+2 t^{2}-1\right) s+t+1$ from (13) and the condition $\psi>\frac{t}{2(t+1)} s$,

$$
\begin{equation*}
1 \leq p:=m_{\widehat{\Gamma}}(-s-1) \leq \frac{t\{|V(\widehat{\Gamma})|-t(s+1)\}}{s+1}<t^{4}+2 t^{3}-t^{2}-t \tag{18}
\end{equation*}
$$

follows by (17). Hence $1 \leq p<t^{4}+2 t^{3}-t^{2}-t$. By (9), (10), (13) and (16),

$$
\begin{align*}
p & =m_{\widehat{\Gamma}}(-s-1)=|V(\widehat{\Gamma})|-|V(\Gamma)|+m_{\Gamma}(-t-1) \\
& =\frac{t(s+t(s+1-2 \psi+t))\left(2 \psi(s t+1)+\left(t^{2}-t\right) s^{2}\right)}{2 \psi\left(2 s^{2}+2 s-2 \psi(s+t)+t(2 s+t+1)\right)} \tag{19}
\end{align*}
$$

By (13) and (19), we have

$$
\begin{align*}
& -\frac{t^{2}\left(t^{2}-1\right) s^{2}}{2 \psi}-t-t^{2}(s+1)-2(s-\psi) t^{3}+(s+1) t^{4}-t^{5}+2(s+1-\psi) p \\
& =\frac{\left(2 t^{4}-2 t^{2}\right) \psi-\left(t^{2}-t\right)\left(t^{4}+p\right)}{s+t} \tag{20}
\end{align*}
$$

where both sides are integers. If $\left(2 t^{4}-2 t^{2}\right) \psi-\left(t^{2}-t\right)\left(t^{4}+p\right)=0$ then by

$$
2(t+1)^{2}+1<s<\frac{2(t+1) \psi}{t}=\frac{t^{4}+p}{t^{2}}
$$

it follows that $p>t^{4}+4 t^{3}+3 t^{2}$, a contradiction to (18). Hence the following number q is a non-zero integer, where

$$
\begin{align*}
& q:=\frac{\left(2 t^{4}-2 t^{2}\right) \psi-\left(t^{2}-t\right)\left(t^{4}+p\right)}{s+t} \text { and thus } \\
& s=\left(\frac{2 t^{4}-2 t^{2}}{q}\right) \psi-\frac{\left(t^{2}-t\right)\left(t^{4}+p\right)}{q}-t . \tag{21}
\end{align*}
$$

By $s>t,(21), \psi>\frac{t}{2(t+1)} s$ and $p<t^{4}+2 t^{3}-t^{2}-t$, we have

$$
\begin{aligned}
2 s q & >(s+t) q=\left(2 t^{4}-2 t^{2}\right) \psi-\left(t^{2}-t\right)\left(t^{4}+p\right) \\
& >s t^{3}(t-1)-\left(t^{2}-t\right)\left(2 t^{4}+2 t^{3}-t^{2}-t\right)
\end{aligned}
$$

and thus

$$
\begin{align*}
q> & \frac{t^{3}(t-1)}{2}-\frac{\left(t^{2}-t\right)\left(2 t^{4}+2 t^{3}-t^{2}-t\right)}{2 s}>\frac{t^{3}(t-1)}{2} \\
& -\frac{\left(t^{2}-t\right)\left(2 t^{4}+2 t^{3}-t^{2}-t\right)}{2 t}>-t^{5} . \tag{22}
\end{align*}
$$

It follows by (21) and (22) that $-t^{5}<q<2 t^{4}-2 t^{2}$ as $\psi \leq s<s+t$ and p is a positive integer. Substituting s of (21) to (20), we obtain a non-zero polynomial in ψ of degree at most three with coefficients as functions in p, q and t. Hence, it follows by $1 \leq p<t^{4}+2 t^{3}-t^{2}-t,-t^{5}<q<2 t^{4}-2 t^{2}$ and (21) that s is bounded above by a function $C(t)$ which is dependent on t.

Now we consider the case $t=2$. Suppose $s>6$. Then Γ is geometric by Lemma 1.1. As we find $|V(\widehat{\Gamma})|<|V(\Gamma)|$ by (12) with $s>t=2, B B^{T}$ is singular. If $B^{T} B$ is invertible then parameters s and ψ satisfy $(s, \psi)=(14,12)$ as $\psi=\frac{3(s+2)}{4} \in \mathbb{N}$ and $\frac{16}{s+2} \in \mathbb{N}(\operatorname{see}(14)$ and $(15))$. If $(s, \psi)=(14,12)$ then θ_{1} and θ_{2} are irrationals and thus

$$
m_{\Gamma}\left(\theta_{1}\right)=m_{\Gamma}\left(\theta_{2}\right)=\frac{|V(\Gamma)|-m_{\Gamma}\left(\theta_{0}\right)-m_{\Gamma}\left(\theta_{3}\right)}{2}=\frac{135}{2} \notin \mathbb{N}
$$

which is impossible. Hence $B^{T} B$ is singular. It follows by (18), (21) and (22) that the following are all integers

$$
\begin{equation*}
p:=m_{\widehat{\Gamma}}(-s-1) \quad \text { and } \quad q:=\frac{24 \psi-2(p+16)}{s+2} \tag{23}
\end{equation*}
$$

with $1 \leq p \leq 25$ and $-17<q \leq 23$. Now we will show $24 \psi-2(p+16) \neq 0$ (i.e., $q \neq 0$). If $24 \psi-2(p+16)=0$ then we find $\psi=3, p=20$ and $s \in\{7,8\}$ as $6<s<3 \psi=\frac{p+16}{4} \leq \frac{41}{4}$. Then it follows by (9), (10), (13) and (23) that $|V(\Gamma)|=\frac{(s+1)\left(s^{2}+6 s+3\right)}{3}, m_{\Gamma}(-3)=\frac{s^{2}(s-2)\left(s^{2}+6 s+3\right)}{3\left(s^{2}-3\right)},|V(\widehat{\Gamma})|$ $=s^{2}+6 s+3$ and $m_{\widehat{\Gamma}}(-s-1)=p=20$. But they do not satisfy (16). Thus $24 \psi-2(p+16) \neq 0$ (i.e., $q \neq 0$). Now substituting $s=\frac{24 \psi-2(p+16)-2 q}{q}$ of (23) in (20), we find

$$
\begin{align*}
& 2\left\{(p-8) q^{2}-24(p-2) q+1728\right\} \psi^{2}+\left\{q^{3}+2(p+7) q^{2}+4\left(p^{2}+14 p-176\right) q\right. \\
& \quad-576(p+16)\} \psi+24(p+q+16)^{2}=0 \tag{24}
\end{align*}
$$

For any integers $1 \leq p \leq 25$ and $-17<q \leq 23$, there exists the unique pair $(s, \psi)=(15,9)$ satisfying $\frac{1}{3} s<\psi \leq s$, (23) and (24). This shows that if $s>6$ then $(s, \psi)=(15,9)$, which completes the proof.

The incidence graph of the $2-(11,5,2)$ design (with intersection array $\{5,4,3 ; 1,2,5\}$) has irrational eigenvalues $\pm \sqrt{3}$. On the other hand, all the eigenvalues of the regular near hexagon (with intersection array $\{24,22,20 ; 1,2,12\}$) are integers. In Lemma 3.2 we will show that for a fixed integer $t \geq 2$ there exists a finite set $S(t)$ such that if integers s and ψ satisfy both $1 \leq \psi \leq \frac{t}{2(t+1)} s$ and
$(s, \psi) \notin S(t)$ then any graph $G(s, t ; \psi)$ has only integral eigenvalues. Using Lemma 3.2 we can easily show that regular near hexagons with $c_{2}=2$ and $s \geq 3$ have only integral eigenvalues since if $\psi=1$ then the set $S(t)$ in Eq. (25) is $\{(1,1)\}$.

Given an integer $t \geq 2$, define a set

$$
\begin{equation*}
S(t):=\left\{(s, \psi) \in \mathbb{N} \times \mathbb{N} \mid F(s, \psi)=0, \psi \in\left\{1,2, \ldots,\left\lfloor\frac{2+\sqrt{t^{2}-t+4}}{2}\right]\right\}\right\}, \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
F(s, \psi):= & 2(t-1) s^{3}+\left(\psi(-6 t+10)+3 t^{2}-5 t+2\right) s^{2} \\
& +\left(4 \psi^{2}(t-4)-2 \psi\left(t^{2}-3 t-2\right)-t^{2}+t\right) s \\
& +2 \psi\left(4 \psi^{2}-2 \psi(t+2)+t+1\right) . \tag{26}
\end{align*}
$$

For each integer ψ satisfying $1 \leq \psi \leq\left\lfloor\frac{2+\sqrt{t^{2}-t+4}}{2}\right\rfloor, F(s, \psi)$ is a non-zero polynomial in s of degree 3 , and hence $|S(t)| \leq 3\left\lfloor\frac{2+\sqrt{t^{2}-t+4}}{2}\right\rfloor$.

Lemma 3.2. Let an integer $t \geq 2$ be given. If a graph $G(s, t ; \psi)$ has a non-integral eigenvalue, where s, ψ are integers satisfying $1 \leq \psi \leq \frac{t}{2(t+1)}$ s then

$$
(s, \psi) \in S(t)
$$

holds, where $S(t)$ is the finite set defined in (25).
Proof. Let $t \geq 2$ be an integer. For given integers s and ψ satisfying $1 \leq \psi \leq \frac{t}{2(t+1)} s$, let $\Gamma:=G(s$, $t ; \psi)$. Assume that Γ has a non-integral eigenvalue. Then θ_{1} and θ_{2} in (8) must be irrational numbers, and the equation $\operatorname{Tr}\left(A_{\Gamma}\right)=\sum_{i=0}^{3} m_{\Gamma}\left(\theta_{i}\right) \theta_{i}=0$ implies $m_{\Gamma}\left(\theta_{1}\right)=m_{\Gamma}\left(\theta_{2}\right)$ and thus

$$
\begin{equation*}
m_{\Gamma}\left(\theta_{1}\right)=m_{\Gamma}\left(\theta_{2}\right)=\frac{(t+1)\left(m_{\Gamma}\left(\theta_{3}\right)-s\right)}{3 s-2 \psi-1}=\frac{|V(\Gamma)|-1-m_{\Gamma}\left(\theta_{3}\right)}{2} \tag{27}
\end{equation*}
$$

follows by (8) and $|V(\Gamma)|=\sum_{i=0}^{3} m_{\Gamma}\left(\theta_{i}\right)$. By substituting (9) and (10) in (27), we find that s and ψ must satisfy the equation $F(s, \psi)=0$, see (26). To complete the proof, we need to show $1 \leq \psi$ $\leq\left\lfloor\frac{2+\sqrt{t^{2}-t+4}}{2}\right\rfloor$ (i.e., $(s, \psi) \in S$). We first show the following claim.

Claim 3.3. Suppose $F(s, \psi)=0$. If $\frac{1}{2}\left(2+\sqrt{t^{2}-t+4}\right)<\psi \leq \frac{t}{2(t+1)}$ s then $s<2 \psi$.
Proof of Claim 3.3. Suppose $\psi>\frac{1}{2}\left(2+\sqrt{t^{2}-t+4}\right)$. As $\psi>\frac{1}{2}\left(2+\sqrt{t^{2}-t+4}\right)>\frac{1}{2}(t+1)$, $F(0, \psi)=2 \psi(2 \psi-1)(2 \psi-(t+1))>0$ and thus there is $s<0$ satisfying $F(s, \psi)=0$. As $F(2 \psi, \psi)=2 \psi\left\{\left(4 t^{2}-6 t+4\right) \psi-t^{2}+2 t+1\right\}>0$ and the largest zero of the equation $\frac{\partial}{\partial s} F(s, \psi)=0$ in s is

$$
\frac{6 \psi t-3 t^{2}+5 t-10 \psi-2+\sqrt{\left(12 t^{2}+4\right) \psi^{2}+\left(-24 t^{3}+72 t^{2}-112 t+64\right) \psi+9 t^{4}-24 t^{3}+25 t^{2}-14 t+4}}{6(t-1)}
$$

which is less than 2ψ, it follows that each real number s satisfying $F(s, \psi)=0$ is less than 2ψ. This shows Claim 3.3.

As the condition $\psi \leq \frac{t}{2(t+1)} s$ implies $2 \psi \leq\left(\frac{t}{t+1}\right) s<s$, we find by Claim 3.3 that if θ_{1} and θ_{2} are irrational numbers then $F(s, \psi)=0$ holds and thus ψ must satisfy

$$
\psi \leq \frac{1}{2}\left(2+\sqrt{t^{2}-t+4}\right)
$$

which shows $(s, \psi) \in S$. This completes the proof.

Using Lemmas 3.1 and 3.2 we now prove Theorem 1.2, which means that given an integer $t \geq 2$ there are only finitely many s 's and ψ 's such that a graph $G(s, t ; \psi)$ exists with $(t, \psi) \neq(2,1)$. It is known that a $G(s, 2 ; 1)$ with $s \geq 1$ is either the Hamming graph $H(3, s+1)$ or the Doob graph with diameter three (in this case $s=3$), see [6, Corollary 9.2.5]. Since the Hamming graph $H(3, s+1)$ with $s \geq 1$ is a $G(s, 2 ; 1)$, it follows that for the pair $(t, \psi)=(2,1)$ there are infinitely many s 's such that a $G(s, 2 ; 1)$ exists.
Proof of Theorem 1.2. Let $t \geq 2$ be a given integer. Let s and ψ be integers such that $1 \leq \psi \leq s$ and $(t, \psi) \neq(2,1)$. We want to show that there exists a positive constant $C=C(t)$ (only depending on t) such that if a graph $\Gamma=G(s, t ; \psi)$ exists then $s \leq C$. We consider two cases, $\psi>\frac{t}{2(t+1)} s$ and $\psi \leq \frac{t}{2(t+1)} s$. In the first case the existence of the constant C follows from Lemma 3.1. In the case $\psi \leq$ $\frac{t}{2(t+1)} s$, let $S=S(t)$ be the set as defined in (25). To complete the proof for given $t \geq 2$ and $(s, \psi) \notin S$ satisfying $1 \leq \psi \leq s,(t, \psi) \neq(2,1)$ and $\psi \leq \frac{t}{2(t+1)} s$, we will show that s is bounded above by a function in t. It follows by Lemma 3.2 that if $(s, \psi) \notin S$ then both θ_{1} and θ_{2} are integers and thus $\sqrt{(s+1-2 \psi)^{2}+4(t-1) s}=\theta_{1}-\theta_{2}=(s+1-2 \psi)+r$, where r is a positive integer. As $\psi \leq \frac{t}{2(t+1)} s$ we find $1 \leq r<2\left(t^{2}-1\right)$. It follows that

$$
\begin{equation*}
\psi=\left(\frac{r-2 t+2}{2 r}\right) s+\frac{r+2}{4} \tag{28}
\end{equation*}
$$

where $1 \leq r<2\left(t^{2}-1\right)$. Substituting (28) into (9) we find

$$
\begin{align*}
& 4(r-2 t+2)^{3}\{|V(\Gamma)|-(s+1)(s t+1)\}-r^{3}(r+2)^{2}\left(t^{2}-t\right) \\
& \quad-2 r(s+1)\left(t^{2}-t\right)(r-2 t+2)\left\{2(r-2 t+2) s-r^{2}-2 r\right\} \\
& =\frac{r^{3}(r+2)^{2}\left(t^{2}-t\right)\left(r^{2}+4 t-4\right)}{-(2 r-4 t+4) s-r(r+2)} \tag{29}
\end{align*}
$$

where both sides are integers. Note here that $-(2 r-4 t+4) s-r(r+2)=-4 r \psi \neq 0$ where the first equality follows from (28). If $2 r-4 t+4 \neq 0$ then $s \leq r^{3}(r+2)^{2}\left(t^{2}-t\right)\left(r^{2}+4 t-4\right)+r(r+2) \leq f(t)$ holds as the absolute value of (29) is at least 1 . If $2 r-4 t+4=0$, i.e., $r=2(t-1)$, then $t=2 \psi$ by (28). Moreover, by (10),

$$
\begin{aligned}
& 4 m_{\Gamma}\left(\theta_{3}\right)-\left\{4(t-1) s^{3}-4 t(t-2) s^{2}+2\left(t^{2}-1\right)(t-2) s-t\left(t^{2}-1\right)(t-2)\right\} \\
& \quad=\frac{t^{2}(t-2)\left(t^{2}-1\right)}{2 s+t}
\end{aligned}
$$

must be an integer. Since $t=2$ implies $\psi=1$, we have $t>2$. Then there are only finitely many positive integers s such that $\frac{t^{2}(t-2)\left(t^{2}-1\right)}{2 s+t}$ is an integer. Hence we showed that if $(s, \psi) \notin S,(t, \psi) \neq$ $(2,1)$ and $\psi \leq \frac{t}{2(t+1)} s$ both hold then s is bounded above by a certain function only depending on t. This completes the proof since S is a finite set with $|S| \leq\left\lfloor\frac{3\left(2+\sqrt{t^{2}-t+4}\right.}{2}\right\rfloor$ and each s and ψ satisfying $(s, \psi) \in S$ are bounded above by a function on t from the definition of the set S (see (25)).

Mohar and Shawe-Taylor [14] (see also [6, Theorem 4.2.16]) characterized distance-regular graphs of order $(s, 1)$ with $s>1$. The distance-regular graphs of order $(1,2)$ and $(2,2)$ were classified by Biggs, Boshier and Shawe-Taylor [5] and Hiraki, Nomura and Suzuki [12], respectively. Some strong results on distance-regular graphs of order $(s, 2)$ with $s>2$ were given by Yamazaki [16]. In [2, Corollary 10.2], the authors showed that for a fixed integer $t>1$, there are only finitely many distanceregular graphs of order (s, t) whose smallest eigenvalue is not equal to $-t-1$.

Using Theorem 1.2, we can show the following theorem.
Theorem 3.4. For a fixed integer $t \geq 2$, there are only finitely many distance-regular graphs of order (s, t) with smallest eigenvalue $-t-1$, diameter $D=3$ and intersection number $c_{2}=2$ except for Hamming graphs with diameter three.

Proof. Let $t \geq 2$ be a given integer. Let Γ be a distance-regular graph of order (s, t) with smallest eigenvalue $-t-1$, diameter $D=3$ and intersection number $c_{2}=2$. Then Γ is geometric with valency $b_{0}=(t+1)$ s. By [1, Lemma 4.1] (see also [3, Proposition $\left.4.2(\mathrm{i})\right]$), the intersection numbers of Γ satisfy $b_{i}=\left(t+1-\tau_{i}\right)\left(s+1-\psi_{i}\right) i=1,2$ and $c_{j}=\tau_{j} \psi_{j-1} j=1,2,3$, where parameters τ_{i} and ψ_{i} are as defined in [1, Section 4]. As any Delsarte clique in Γ has size $s+1=a_{1}+2$, it follows by [3, Lemma 5.1 (i)] that $\psi_{1}=1$ which shows $\tau_{2}=\tau_{2} \psi_{1}=c_{2}=2$. Note here that Γ satisfies $\tau_{1}=1$ and $\tau_{3}=t+1$ (see [1 , Equation (9)]). Put $\psi:=\psi_{2}$. Then Γ is a $G(s, t ; \psi)$. If $s \neq 3$ then the condition $(t, \psi)=(2,1)$ is equivalent to that Γ is the Hamming graph $H(3, s+1)$. As $b_{0}=(t+1) s$ and $D=3$, the result follows by Theorem 1.2.

In [13, Conjecture 7.5], the authors conjectured that for a fixed integer $t \geq 2$, any geometric distance-regular graph with smallest eigenvalue $-t-1$, diameter $D \geq 3$ and $c_{2} \geq 2$ is either a Johnson graph, a Grassmann graph, a Hamming graph, a bilinear forms graph, or the number of vertices is bounded above by a function in t. Theorem 3.4 gives us more evidence that the conjecture is true.

4. Proof of Theorem 1.3

For given integers s and ψ with $1 \leq \psi \leq s$, let $\Gamma=G(s, 2 ; \psi)$. Then $\iota(\Gamma)=\{3 s, 2 s, s+1-\psi$; $1,2,3 \psi\}$. If $\psi=1$ then $G(s, 2 ; \psi)$ is either the Hamming graph $H(3, s+1)$ or the Doob graph with diameter three (in this case $s=3$), see [6, Corollary 9.2.5]. If $\psi=s$ then $G(s, 2 ; \psi)$ can be obtained as the collinearity graph of the generalized quadrangle of order $(s, 3)$ deleting the edges in a spread, where $s \in\{3,5\}$ (see [1, Theorem 4.3]). In this section, we prove Theorem 1.3 which states that if a graph $G(s, 2 ; \psi)$ exists, where s and ψ are integers with $1<\psi<s$ then $(s, \psi)=(15,9)$. To prove Theorem 1.3, we need the following lemma.

Lemma 4.1. Let s and ψ be any given integers with $1<\psi<s$. If a graph $G(s, 2 ; \psi)$ exists then

$$
\psi>\frac{1}{3} s
$$

holds.
Proof. Assume that a graph $\Gamma:=G(s, 2 ; \psi)$ exists and $\psi \leq \frac{1}{3} s$. By Lemma 3.2 with $t=2$, all the eigenvalues of Γ are integers as the set $S=\{(s, 2) \in \mathbb{N} \times \mathbb{N} \mid F(s, 2)=0\}$ in (25) is empty. As $s+1$ $-2 \psi>0$ holds from the assumption $\psi \leq \frac{1}{3} s$, we find by (8) that

$$
\begin{align*}
& \theta_{1}-\theta_{2}=\sqrt{(s+1-2 \psi)^{2}+4 s}=(s+1-2 \psi)+r \text { and thus } \\
& \psi=\frac{(2 r-4) s+r^{2}+2 r}{4 r} \tag{30}
\end{align*}
$$

for some positive integer r. As $\psi=\frac{(2 r-4) s+r^{2}+2 r}{4 r}$ is an integer with $1<\psi \leq \frac{1}{3} s$, we find $r=4$ and $s \geq 18$. Thus Γ is geometric by Lemma 1.1. Since the numbers $\psi=\frac{s+6}{4},|V(\widehat{\Gamma})|=18 s-69+\frac{432}{s+6}$ and

$$
\begin{align*}
4(r & -2)^{3}\{|V(\Gamma)|-(s+1)(2 s+1)\}-2 r^{3}(r+2)^{2} \\
& -4 r(s+1)(r-2)\left\{2(r-2) s-r^{2}-2 r\right\} \\
= & \frac{-2 r^{3}(r+2)^{2}\left(r^{2}+4\right)}{(2 r-4) s+r^{2}+2 r}=\frac{-23040}{s+6} \tag{31}
\end{align*}
$$

must be integers (see (9), (13) and (30)), s must satisfy

$$
\begin{equation*}
\frac{s+6}{4} \in \mathbb{N} \quad \text { and } \quad \frac{144}{s+6} \in \mathbb{N} \tag{32}
\end{equation*}
$$

where $144=\operatorname{gcd}(432,23040)$. Since $s \geq 18$ also holds, we find by (32) that $s \in\{18,30,42,66,138\}$. But now $m_{\Gamma}(-3)=\frac{s(3 s-2)(3 s+2)(2 s+3)}{(s+6)(3 s+4)}$ is not a positive integer for any $s \in\{18,30,42,66,138\}$ (see (10)). Hence $\psi>\frac{1}{3}$ s follows.

Proof of Theorem 1.3. For any given integers s and ψ with $1<\psi<s$, let $\Gamma:=G(s, 2 ; \psi)$. As $\psi>$ $\frac{1}{3} s$ holds by Lemma 4.1, it follows by Lemma 3.1 that either $s \leq 6$ or $(s, \psi)=(15,9)$ holds. Since there are no integers $s \leq 6$ and ψ satisfying both $\frac{1}{3} s<\psi<s$ and $m_{\Gamma}\left(\theta_{3}\right) \in \mathbb{N}$ (see (10)), we find $(s, \psi)=(15,9)$ which completes the proof.

Acknowledgments

Sejeong Bang was supported by Yeungnam University research grants in 2011. Jack Koolen was partially supported by a grant of the 'One hundred talent program' of the Chinese government.

References

[1] S. Bang, Geometric distance-regular graphs without 4-claws, Linear Algebra Appl. 438 (2013) 37-46.
[2] S. Bang, A. Dubickas, J.H. Koolen, V. Moulton, There are only finitely many distance-regular graphs of given valency greater than two, 2009, arXiv:0909.5253v1, submitted for publication.
[3] S. Bang, A. Hiraki, J.H. Koolen, Delsarte clique graphs, European J. Combin. 28 (2007) 501-516.
[4] N. Biggs, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993.
[5] N.L. Biggs, A.G. Boshier, J. Shawe-Taylor, Cubic distance-regular graphs, J. Lond. Math. Soc. 33 (1986) 385-394.
[6] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[7] B. De Bruyn, F. Vanhove, On Q-polynomial regular near 2d-gons, submitted for publication.
[8] Edwin R. van Dam, Jack H. Koolen, Hajime Tanaka, Distance-regular graphs, https://sites.google.com/site/edwinrvandam/ pub, Unpublished manuscript.
[9] A.L. Gavrilyuk, A.A. Makhnev, Distance-regular graph with intersection array $\{45,30,7 ; 1,2,27\}$ does not exist, Discrete Math. Appl. (2013) in press.
[10] C.D. Godsil, Geometric distance-regular covers, New Zealand J. Math. 22 (1993) 31-38.
[11] A. Hiraki, J. Koolen, A Higman-Haemers inequality for thick regular near polygons, J. Algebraic Combin. 20 (2004) 213-218.
[12] A. Hiraki, K. Nomura, H. Suzuki, Distance-regular graphs of valency 6 and $a_{1}=1$, J. Algebraic Combin. 11 (2000) 101-134.
[13] J.H. Koolen, S. Bang, On distance-regular graphs with smallest eigenvalue at least -m, J. Combin. Theory Ser. B 100 (2010) 573-584.
[14] B. Mohar, J. Shawe-Taylor, Distance-biregular graphs with 2-valent vertices and distance regular line graphs, J. Combin. Theory Ser. B 38 (1985) 193-203.
[15] S. Shad, E. Shult, The near n-gon geometries, Unpublished manuscript.
[16] N. Yamazaki, Distance-regular graphs with $G(x) \simeq 3 * K_{a+1}$, European J. Combin. 16 (1995) 525-536.

[^0]: E-mail addresses: sjbang@ynu.ac.kr (S. Bang), koolen@postech.ac.kr (J.H. Koolen).
 ${ }^{1}$ Tel.: +82 53810 2316; fax: +82 538104614.
 0195-6698/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
 http://dx.doi.org/10.1016/j.ejc.2013.06.044

