Open Access System for Information Sharing
All
Title
Author
Subject
Login
Library
Help
검색
HOME
Communities & Collections
Researchers
Title
Browse by Researchers
BARLAT, FREDERIC GERARD (BARLAT FREDERIC GERARD)
Ferrous & Energy materials Technology(철강 · 에너지소재대학원)
Field(s)
E-Mail
Homepage
Loading...
Export
Journal Papers
(International)
Journal Papers
(Domestic)
Conference Papers
(International)
Conference Papers
(Domestic)
Journal Papers(International)
Journal Papers(Domestic)
Conference Papers(International)
Conference Papers(Domestic)
20 items
100 items
200 items
Show more items...
Keyword
BEHAVIOR:18||ALUMINUMALLOY SHEETS:15||Bauschinger effect:14||DEFORMATION:13||Anisotropy:13||Finite element method:11||MODEL:10||YIELD FUNCTIONS:9||PLASTICITY:9||METALS:9||PREDICTION:9||CRYSTAL PLASTICITY:8||STRAINPATH:8||STEEL:7||SHEET:7||Advanced high strength steel:7||Springback:7||YIELD FUNCTION:6||METAL PLASTICITY:6||CYCLIC PLASTICITY:6||EVOLUTION:6||CRITERION:5||SPRINGBACK EVALUATION:5||INCREMENTAL DEFORMATIONTHEORY:5||SHEETS:5||ANISOTROPIC YIELD FUNCTIONS:5||Plasticity:5||Constitutive model:5||STRAINRATE:5||Constitutive modeling:5||FORMING LIMIT DIAGRAMS:5||Anisotropic hardening:5||PLASTIC ANISOTROPY:5||ANISOTROPY:4||ELASTOPLASTIC CONSTITUTIVE RELATIONS:4||INTEGRATION ALGORITHMS:4||CRYSTALLOGRAPHIC TEXTURE:4||Yield function:4||SIMPLE SHEAR:4||Elastoplasticity:4||Constitutive models:4||SHEET METALS:4||Stress integration algorithm:4||SIMULATION:4||Virtual fields method:4||STRESS:4||STRAIN REVERSAL:4||ALUMINUM:4||MICROSTRUCTURE:4||HARDENING MODEL:3||Stainless steel:3||KINETICS:3||PLASTIC BEHAVIOR:3||Hole expansion:3||Sheet metal forming:3||PLASTIC STRAINRATE:3||Hardening:3||Anisotropic material:3||DUALPHASE STEEL:3||Strain path change:3||Fracture:3||ORTHOTROPIC PLASTICITY:3||STEELS:3||Sheet forming:3||High strength steel:3||FORMING SIMULATIONS:3||Strain rate potentials:3||TRANSFORMATION:3||TRIP STEELS:3||TEXTURE DEVELOPMENT:3||POLYCRYSTALLINE METALS:3||IDENTIFICATION:3||Mechanical testing:3||DUALPHASE STEELS:3||TWIP steel:3||TEXTURE:3||TRIP steel:3||MECHANICALPROPERTIES:3||YOUNGS MODULUS:3||dualphase steel:3||TENSILE TEST:3||LOWCARBON STEEL:3||Finite element simulation:3||Formability:3||Crystal plasticity:3||FORMABILITY:3||WORKHARDENING BEHAVIOR:2||Aluminum alloy:2||Fullfield measurement:2||ELASTOPLASTIC CONSTITUTIVE PARAMETERS:2||MAGNESIUM ALLOY SHEETS:2||IMPLICIT:2||INDUCEDPLASTICITY STEEL:2||formability:2||LENGTH CHANGES:2||finite element simulation:2||IF STEEL:2||Finite elements:2||ELEMENT:2||Parameter identification:2||Ferritic stainless steel:2||Earing profile:2||EXPLICIT:2||INTERNALSTRESS:2||Direct search:2||Anisotropic hardenings:2||Tensioncompression asymmetry:2||Swift effects:2||FREE END TORSION:2||Udraw/bending:2||SINGLECRYSTALS:2||tailored properties:2||Crosshardening:2||LOCALIZED NECKING:2||Sheet metal:2||Yield surface:2||STRESS YIELD FUNCTION:2||Dislocations:2||Yield condition:2||RECTANGULAR CROSSSECTION:2||NUMERICALANALYSIS:2||SPECIMENS:2||FINITEELEMENT METHODS:2||AZ31 ALLOY:2||STATE:2||Forming limit:2||FCC:2||Constitutive behaviour:2||Anisotropic hardening model:2||BACK EVALUATION:2||LAWS:2||Hot stamping:2||crosshardening:2||Strain hardening:2||Loadingunloading test:2||YIELD CRITERION:2||INTERSTITIALFREE STEEL:2||INELASTIC BEHAVIOR:2||Isotropickinematic hardening:2||SHEETMETAL:2||GRAIN:2||MECHANICAL EQUATION:2||LOAD RELAXATION:2||TEMPERATURE:2||FORMING LIMIT PREDICTION:2||Stressstrain curves:2||Partial Quenching (PQ):2||Hot Press Forming (HPF):2||Tailor Welded Blank (TWB):2||QUENCHING PROCESS:2||SPRINGBACK SIMULATION:2||Cutting plane algorithm:2||Shear:2||KINEMATIC HARDENING LAWS:2||Isotropic hardening:2||RECONSTRUCTION:2||Dislocation density:2||Bpillar reinforcement:2||friction:2||LARGESTRAIN:2||RECOVERY:2||Isoerror map:2||TRANSIENTBEHAVIOR:2||Constitutive behavior:2||STRAINPATH CHANGES:2||Yield criteria:2||FINITEELEMENT SIMULATIONS:2||Elastoplastic behaviour:2||CURVE:2||Strain hardening stagnation:2||ACTIVATION VOLUME:2||BCC METALS:2||ALLOY SHEETS:2||KirkaldyVenugopalan model:2||representative volume element:2||sliding velocity:2||TRANSFORMATIONS:2||Finite element:2||Strain rate potential Srp200418p:2||Warm cup drawing:2||Simplex method:2||Strainpath change:2||TENSIONCOMPRESSION:2||Phase transformation:2||mesoscale:2||TRANSFORMATION PLASTICITY:2||PHASECHANGE:2||AHSS:2||PLASTICDEFORMATION:2||Twinning:2||Closest point projection method:2||Polycrystalline model:2||STAINLESSSTEEL:2||RETURN MAPPING ALGORITHM:2||Inverse problem:2||FRACTURE INITIATION:2||LIMIT:2||DIAGRAMS:2||SOLIDS:2||TEXTURE FUNCTION:2||AUTOMOTIVE SHEETS:2||Vickers hardness:2||Fullfield measurements:2||contact pressure:2||phase transformation:2||Nonlinear elastic modulus:2||Inelastic recovery:2||LOW TEMPERATURE:2||ANISOTROPIC MATERIALS:2||POLYCRYSTALS:2||STRESSRELAXATION:1||BCC POLYCRYSTALS:1||STRESS STATE:1||PURITY ALPHATITANIUM:1||DEEPDRAWING PROCESS:1||INDUCED PLASTICITY STEELS:1||ALLOY:1||Strength differential effect:1||CRYSTALS:1||THINFILMS:1||phiModel:1||FCC METALS:1||Eating:1||Anisotropic:1||CELLWALLS:1||METAL:1||mathematical model:1||Shearing:1||High Mn TWIP steel:1||MAXIMUM FORCE CRITERION:1||Forming limits:1||Convex function:1||precipitate strengthening:1||Delamination fracture:1||COMPUTATIONAL SIMULATION:1||CONSTITUTIVE MODEL:1||DESIGN:1||tension/compression asymmetry:1||Aluminum alloys:1||Grain refinement:1||Relaxation:1||Loadingunloadingreloading:1||Thermography:1||Dynamic hardening:1||INTERNALSTRESSES:1||texture:1||Computational efficiency:1||Modulus reduction:1||Springback prediction:1||Experimental validations:1||Ferritic steel:1||Principle of virtual work:1||FERRITIC STAINLESSSTEEL:1||LUBRICATION:1||DP780:1||Cyclic tensiontorsion:1||Hydraulic bulge test:1||FCC CRYSTALS:1||Forming limit diagram:1||HOLE EXPANSION:1||Metal plasticity:1||metal forming:1||DEFORMATION ELASTOPLASTICITY:1||STACKINGFAULT ENERGY:1||rValue:1||Kinematic:1||aluminium:1||Forming limit curve:1||Forming limit diagrams:1||STRAINPATH CHANGE:1||X ALLOYS:1||strain hardening:1||METASTABLE AUSTENITIC STEELS:1||linear transformations:1||IMPACT:1||HARDENING/SOFTENING BEHAVIOR:1||simple shear:1||Anisotropic yield functions:1||Bending (deformation):1||Deformation:1||Image analysis:1||Strain:1||Dual phase:1||Ferrite:1||Thermal barrier coatings:1||Comparative studies:1||Multistage forming:1||void nucleation micromechanisms:1||TENSILE DEFORMATION:1||Stepwise motion:1||Mecahnical servopress:1||asymmetric rolling:1||strength:1||Temperature:1||Aluminum tube:1||Yield criterion:1||NONASSOCIATED FLOW:1||Nanoindenter:1||STRAIN GRADIENT PLASTICITY:1||TENSILESTRENGTH:1||Deep Drawing:1||TEXTURE EVOLUTION:1||Limit analysis:1||Constitutive laws:1||Stretchflangeability:1||Necking:1||Plastic anisotropy:1||Biaxial tensile tests:1||SUBSEQUENT YIELD SURFACE:1||Plastic flow localization:1||thermomechanical modeling:1||FRACTURETOUGHNESS BEHAVIOR:1||CLOSURE:1||INDUCED MARTENSITICTRANSFORMATION:1||anisotropic yield function:1||ALUMINUMALLOYS:1||PRESSURE:1||Solidshell:1||MULTIPLE INTEGRATION POINTS:1||Linear transformations:1||TEMPERATUREDEPENDENCE:1||advanced high strength steel:1||tempering process:1||STRAIN:1||Elastic moduli:1||Elastoplasticity:1||Digital image correlation technique:1||Process Variables:1||Parameter estimation:1||Constitutive parameters:1||Inverse problem solution:1||Metallic material:1||EBSD analysis:1||FRACTURE MECHANISMS:1||DUCTILE FRACTURE:1||OVERSTRESS AFVBO:1||Crystallographic dislocation model:1||FAILURE CRITERION:1||springback compensation:1||ROOMTEMPERATURE:1||Plates:1||ELECTROPLATED NICKEL:1||Analytical approach:1||Cup height profile:1||REVERSAL:1||FINITEELEMENTMETHOD:1||POLYCRYSTALLINE MODEL:1||INTRAGRANULAR BEHAVIOR:1||DEFORMATIONBEHAVIOR:1||Anisotropic sheet metals:1||hexagonal metals:1||Texture:1||SHEAR TEXTURE:1||High strain rate:1||DUALPHASE:1||low cycle fatigue:1||PLANESTRAIN DEFORMATION:1||Materials properties:1||Martensitic steel:1||Hysteresis:1||Piecewise linear approximations:1||Finite element simulations:1||Localized thinning:1||Hardening law:1||Twist:1||SIMULATIONS:1||Hole expansion test:1||DISPLACEMENT ADJUSTMENT:1||Hexagonal materials:1||FINITEELEMENTANALYSIS:1||COMPRESSION:1||PACKED METALS:1||INSITU:1||INDENTATION EXPERIMENTS:1||DEFORMATION POLYCRYSTAL VISCOPLASTICITY:1||ROLLINGTEXTURE:1||SHEETMETAL FORMABILITY:1||TEMPERATURES:1||aluminum 6111T4 alloys:1||PLATE:1||martensitic phase transformation:1||numerical model:1||REPRESENTATION:1||SOLIDSHELL ELEMENT:1||Mechanical behavior:1||DEFORMATION TEXTURES:1||FLOWSTRESS:1||TRIP:1||heat treatment:1||MICROSTRUCTURES:1||Elongation:1||Dynamic strain aging:1||DISLOCATION DENSITIES:1||METALLIC MATERIALS:1||C. Characteristics:1||Unloading:1||Nonlinear elasticity:1||Strain measurement:1||Cost effectiveness:1||Inverse problems:1||RECRYSTALLIZATION:1||ALUMINUM TUBES:1||WORKHARDENING/SOFTENING BEHAVIOR:1||Materials modelling:1||DIE DESIGN METHOD:1||ANISOTROPIC RESPONSE:1||SLIP:1||Nanotension:1||Microstructures:1||GRAINSIZE:1||Yield stress:1||PART:1||HARDENING BEHAVIOR:1||Polynomials:1||REPRESENTATIONS:1||Aluminumlithium (AlLi):1||Smallscale yielding:1||GROWTH:1||304STAINLESSSTEEL:1||Micromechanical model:1||FINITEELEMENT SIMULATION:1||PATH CHANGES:1||AA5754:1||ENHANCEMENT:1||Reverse loading:1||Martensite:1||Tensile testing:1||Microstructure evolutions:1||Microstructural analysis:1||Elasticity:1||Stiffness:1||Metal drawing:1||Elasticplastic finite element model:1||Ferritic stainless steel sheet:1||Shear stress:1||OXIDE SCALE:1||Advanced high strength steel (AHSS):1||RECTANGULAR H96 TUBE:1||STRAINS:1||Low carbon steels:1||Forming limit stress diagram:1||MarciniakKuczinsky model:1||ACCURACY:1||Earing:1||PRESSURE SENSITIVE METALS:1||Buckling:1||WROUGHT MAGNESIUM:1||Material testing:1||FINITE STRAIN:1||RATEDEPENDENT POLYCRYSTALS:1||SELFCONSISTENT APPROACH:1||Numerical methods:1||Ferritic stainless steel sheets:1||Modeling:1||Stretch flangeability:1||CONSTITUTIVEEQUATIONS:1||friction stir welding:1||Stress and deformation fields:1||Yld200418p model:1||ALLI ALLOYS:1||AMBIENT:1||austenitic stainless steels:1||CYCLIC DEFORMATION:1||DESCRIBE:1||Enhanced assumed strain:1||Asymmetrical rolling:1||GRAINREFINEMENT:1||Advanced high strength steels:1||AL(SI,GE) ALLOYS:1||Piecewise linear techniques:1||Commercial finite element codes:1||Springback simulations:1||Steel sheet:1||Twist springback:1||Stamping:1||Optimization:1||Proton exchange membrane fuel cells (PEMFC):1||Shear tests:1||ASYMMETRY:1||Thermomechanical FE simulation:1||PART II:1||TESTS:1||MECHANICALBEHAVIOR:1||High strength steels:1||asymmetrical U shape bending:1||blade:1||OPTIMIZATION:1||NONLINEAR MECHANICAL RESPONSE:1||Gripless test:1||NANOCRYSTALLINE COPPER:1||Texture crystal plasticity:1||STRAINRATE POTENTIALS:1||ROLLED SHEETS:1||shear fracture:1||CHANGING STRAIN PATHS:1||PLANESTRESS CONDITIONS:1||Numerical simulation:1||3D finite element analysis:1||TSTRESS:1||FATIGUE:1||strain rate:1||THICKNESS:1||DP steel:1||WIDERANGE:1||ALUMINUM SINGLECRYSTALS:1||crystal plasticity:1||Microstructure:1||Viscoplastic selfconsistent:1||Phenomenological plasticity:1||Bending moments:1||Deep drawing:1||Digital image correlations:1||Kinematic hardening model:1||Fuel cells:1||Graphite bipolar plates:1||Stress strain relation:1||FRICTION:1||
Publication & Time Cited Count
(For the Last 5 years)
Browse
Communities & Collections
Researcher
Title
Login
Library
Help