Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Defocus and Motion Blur Detection with Deep Contextual Features

Title
Defocus and Motion Blur Detection with Deep Contextual Features
Authors
Kim, BeomseokSon, HyeongseokPark, Seong-JinCho, SunghyunLee, Seungyong
POSTECH Authors
Lee, Seungyong
Date Issued
Oct-2018
Publisher
WILEY
Abstract
We propose a novel approach for detecting two kinds of partial blur, defocus and motion blur, by training a deep convolutional neural network. Existing blur detection methods concentrate on designing low-level features, but those features have difficulty in detecting blur in homogeneous regions without enough textures or edges. To handle such regions, we propose a deep encoder-decoder network with long residual skip-connections and multi-scale reconstruction loss functions to exploit high-level contextual features as well as low-level structural features. Another difficulty in partial blur detection is that there are no available datasets with images having both defocus and motion blur together, as most existing approaches concentrate only on either defocus or motion blur. To resolve this issue, we construct a synthetic dataset that consists of complex scenes with both types of blur. Experimental results show that our approach effectively detects and classifies blur, outperforming other state-of-the-art methods. Our method can be used for various applications, such as photo editing, blur magnification, and deblurring.
We propose a novel approach for detecting two kinds of partial blur, defocus and motion blur, by training a deep convolutional neural network. Existing blur detection methods concentrate on designing low-level features, but those features have difficulty in detecting blur in homogeneous regions without enough textures or edges. To handle such regions, we propose a deep encoder-decoder network with long residual skip-connections and multi-scale reconstruction loss functions to exploit high-level contextual features as well as low-level structural features. Another difficulty in partial blur detection is that there are no available datasets with images having both defocus and motion blur together, as most existing approaches concentrate only on either defocus or motion blur. To resolve this issue, we construct a synthetic dataset that consists of complex scenes with both types of blur. Experimental results show that our approach effectively detects and classifies blur, outperforming other state-of-the-art methods. Our method can be used for various applications, such as photo editing, blur magnification, and deblurring.
We propose a novel approach for detecting two kinds of partial blur, defocus and motion blur, by training a deep convolutional neural network. Existing blur detection methods concentrate on designing low-level features, but those features have difficulty in detecting blur in homogeneous regions without enough textures or edges. To handle such regions, we propose a deep encoder-decoder network with long residual skip-connections and multi-scale reconstruction loss functions to exploit high-level contextual features as well as low-level structural features. Another difficulty in partial blur detection is that there are no available datasets with images having both defocus and motion blur together, as most existing approaches concentrate only on either defocus or motion blur. To resolve this issue, we construct a synthetic dataset that consists of complex scenes with both types of blur. Experimental results show that our approach effectively detects and classifies blur, outperforming other state-of-the-art methods. Our method can be used for various applications, such as photo editing, blur magnification, and deblurring.
URI
http://oasis.postech.ac.kr/handle/2014.oak/94494
DOI
10.1111/cgf.13567
ISSN
0167-7055
Article Type
Article
Citation
COMPUTER GRAPHICS FORUM, vol. 37, no. 7, page. 277 - 288, 2018-10
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

 LEE, SEUNGYONG
Dept of Computer Science & Enginrg
Read more

Views & Downloads

Browse