Open Access System for Information Sharing

Login Library

 

Conference
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

DILOF: Effective and Memory Efficient Local Outlier Detection in Data Streams

Title
DILOF: Effective and Memory Efficient Local Outlier Detection in Data Streams
Authors
NA, GYOUNGSEOKDonghyun KimYU, HWANJO
POSTECH Authors
YU, HWANJO
Date Issued
20-Aug-2018
Publisher
ACM
Abstract
With precipitously growing demand to detect outliers in data streams, many studies have been conducted aiming to develop extensions of well-known outlier detection algorithm called Local Outlier Factor (LOF), for data streams. However, existing LOF-based algorithms for data streams still suffer from two inherent limitations: 1) Large amount of memory space is required. 2) A long sequence of outliers is not detected. In this paper, we propose a new outlier detection algorithm for data streams, called DILOF that effectively overcomes the limitations. To this end, we first develop a novel density-based sampling algorithm to summarize past data and then propose a new strategy for detecting a sequence of outliers. It is worth noting that our proposing algorithms do not require any prior knowledge or assumptions on data distribution. Moreover, we accelerate the execution time of DILOF about 15 times by developing a powerful distance approximation technique. Our comprehensive experiments on real-world datasets demonstrate that DILOF significantly outperforms the state-of-the-art competitors in terms of accuracy and execution time. The source code for the proposed algorithm is available at our website: http://di.postech.ac.kr/DILOF.
URI
http://oasis.postech.ac.kr/handle/2014.oak/94022
DOI
10.1145/3219819.3220022
Article Type
Conference
Citation
KDD '18 Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, page. 1993 - 2002, 2018-08-20
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

 YU, HWANJO
Dept of Computer Science & Enginrg
Read more

Altmetric

Views & Downloads

Browse