Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.author이시우-
dc.date.accessioned2018-10-17T05:05:51Z-
dc.date.available2018-10-17T05:05:51Z-
dc.date.issued2018-
dc.identifier.otherOAK-2015-08131-
dc.identifier.urihttp://postech.dcollection.net/common/orgView/200000104453ko_KR
dc.identifier.urihttp://oasis.postech.ac.kr/handle/2014.oak/92964-
dc.descriptionMaster-
dc.description.abstractAndrew, Dyson and Hickerson proved Andrew’s conjecture on coefficients of a q-series σ(q) by discovering connection between the coefficients and arithmetic of Q(√6). Using this, Cohen proved that the coefficients can be interpreted as coefficients of a certain Maass wave form on Γ_0(2) with a nontrivial multiplier system ν_C. Also, Zagier associated a quantum modular form to the Cohen’s Maass wave form. In this paper, using Wolhfhart’s operator, we define Hecke operators on the space of Maass wave forms and quantum modular forms which change multiplier system, and prove that the Maass wave form and the quantum modular form are eigenforms with respect to these operators. As a corollary, we find new identity of the p-th coefficients of σ(q) in terms of p-th root of unities. Also, we proved similar thing for Li-Ngo-Rhoades’ Maass wave form and the associated quantum modular form.-
dc.languageeng-
dc.publisher포항공과대학교-
dc.titleMaass wave forms, quantum modular forms and Hecke operators-
dc.typeThesis-
dc.contributor.college일반대학원 수학과-
dc.date.degree2018- 8-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse