Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Maass wave forms, quantum modular forms and Hecke operators

Title
Maass wave forms, quantum modular forms and Hecke operators
Authors
이시우
Date Issued
2018
Publisher
포항공과대학교
Abstract
Andrew, Dyson and Hickerson proved Andrew’s conjecture on coefficients of a q-series σ(q) by discovering connection between the coefficients and arithmetic of Q(√6). Using this, Cohen proved that the coefficients can be interpreted as coefficients of a certain Maass wave form on Γ_0(2) with a nontrivial multiplier system ν_C. Also, Zagier associated a quantum modular form to the Cohen’s Maass wave form. In this paper, using Wolhfhart’s operator, we define Hecke operators on the space of Maass wave forms and quantum modular forms which change multiplier system, and prove that the Maass wave form and the quantum modular form are eigenforms with respect to these operators. As a corollary, we find new identity of the p-th coefficients of σ(q) in terms of p-th root of unities. Also, we proved similar thing for Li-Ngo-Rhoades’ Maass wave form and the associated quantum modular form.
URI
http://postech.dcollection.net/common/orgView/200000104453
http://oasis.postech.ac.kr/handle/2014.oak/92964
Article Type
Thesis
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse