Open Access System for Information Sharing

Login Library

 

Article
Cited 6 time in webofscience Cited 0 time in scopus
Metadata Downloads

On geometric classification of 5d SCFTs

Title
On geometric classification of 5d SCFTs
Authors
Patrick JeffersonSheldon KatzKIM, HEE CHEOLCumrun Vafa
POSTECH Authors
KIM, HEE CHEOL
Date Issued
Apr-2018
Publisher
Springer Berlin Heidelberg
Abstract
We formulate geometric conditions necessary for engineering 5d superconformal field theories (SCFTs) via M-theory compactification on a local Calabi-Yau 3-fold. Extending the classification of the rank 1 cases, which are realized geometrically as shrinking del Pezzo surfaces embedded in a 3-fold, we propose an exhaustive classification of local 3-folds engineering rank 2 SCFTs in 5d. This systematic classification confirms that all rank 2 SCFTs predicted using gauge theoretic arguments can be realized as consistent theories, with the exception of one family which is shown to be non-perturbatively inconsistent and thereby ruled out by geometric considerations. We find that all rank 2 SCFTs descend from 6d (1,0) SCFTs compactified on a circle possibly twisted with an automorphism together with holonomies for global symmetries around the Kaluza-Klein circle. These results support our conjecture that every 5d SCFT can be obtained from the circle compactification of some parent 6d (1,0) SCFT.
We formulate geometric conditions necessary for engineering 5d superconformal field theories (SCFTs) via M-theory compactification on a local Calabi-Yau 3-fold. Extending the classification of the rank 1 cases, which are realized geometrically as shrinking del Pezzo surfaces embedded in a 3-fold, we propose an exhaustive classification of local 3-folds engineering rank 2 SCFTs in 5d. This systematic classification confirms that all rank 2 SCFTs predicted using gauge theoretic arguments can be realized as consistent theories, with the exception of one family which is shown to be non-perturbatively inconsistent and thereby ruled out by geometric considerations. We find that all rank 2 SCFTs descend from 6d (1,0) SCFTs compactified on a circle possibly twisted with an automorphism together with holonomies for global symmetries around the Kaluza-Klein circle. These results support our conjecture that every 5d SCFT can be obtained from the circle compactification of some parent 6d (1,0) SCFT.
We formulate geometric conditions necessary for engineering 5d superconformal field theories (SCFTs) via M-theory compactification on a local Calabi-Yau 3-fold. Extending the classification of the rank 1 cases, which are realized geometrically as shrinking del Pezzo surfaces embedded in a 3-fold, we propose an exhaustive classification of local 3-folds engineering rank 2 SCFTs in 5d. This systematic classification confirms that all rank 2 SCFTs predicted using gauge theoretic arguments can be realized as consistent theories, with the exception of one family which is shown to be non-perturbatively inconsistent and thereby ruled out by geometric considerations. We find that all rank 2 SCFTs descend from 6d (1,0) SCFTs compactified on a circle possibly twisted with an automorphism together with holonomies for global symmetries around the Kaluza-Klein circle. These results support our conjecture that every 5d SCFT can be obtained from the circle compactification of some parent 6d (1,0) SCFT.
We formulate geometric conditions necessary for engineering 5d superconformal field theories (SCFTs) via M-theory compactification on a local Calabi-Yau 3-fold. Extending the classification of the rank 1 cases, which are realized geometrically as shrinking del Pezzo surfaces embedded in a 3-fold, we propose an exhaustive classification of local 3-folds engineering rank 2 SCFTs in 5d. This systematic classification confirms that all rank 2 SCFTs predicted using gauge theoretic arguments can be realized as consistent theories, with the exception of one family which is shown to be non-perturbatively inconsistent and thereby ruled out by geometric considerations. We find that all rank 2 SCFTs descend from 6d (1,0) SCFTs compactified on a circle possibly twisted with an automorphism together with holonomies for global symmetries around the Kaluza-Klein circle. These results support our conjecture that every 5d SCFT can be obtained from the circle compactification of some parent 6d (1,0) SCFT.
URI
http://oasis.postech.ac.kr/handle/2014.oak/50100
DOI
10.1007/JHEP04(2018)103
ISSN
1029-8479
Article Type
Article
Citation
Journal of High Energy Physics, vol. 103, no. 4, 2018-04
Files in This Item:

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric

Views & Downloads

Browse