Open Access System for Information Sharing

Login Library

 

Article
Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads

ONVisor : Towards a Scalable and Flexible SDN-based Network Virtualization Platform on ONOS

Title
ONVisor : Towards a Scalable and Flexible SDN-based Network Virtualization Platform on ONOS
Authors
Han, YoonseonJian LiVachuska, ThomasAl-Shabibi, AliHuang, HuibaiSnow, WilliamHONG, WON KI
POSTECH Authors
HONG, WON KI
Date Issued
Dec-2017
Publisher
WILEY-BLACKWELL
Abstract
SummaryNetwork virtualization (NV) technologies have attracted a lot of attention as an essential solution for future networking infrastructure. The NV enables multiple tenants to share the same physical infrastructure and to create independent virtual networks (VNs) by decoupling the physical network in terms of topology, address, and control functions. One feasible way to realize full NV involves considering solutions based on the software‐defined networking (SDN) paradigm using its programmability. The SDN contributes many benefits to both network operations and management including programmability, agility, elasticity, and flexibility. There are several SDN‐based NV solutions; however, they suffered from a lack of scalability, high availability. Also, they have high latency between control and data plane because of proxy‐based architecture. In this thesis, we introduce a new NV platform, named Open Network Hypervisor (ONVisor). The design objectives include, among the features, (1) multitenancy, (2) scalability, (3) flexibility, (4) isolated VNs, and (5) VN federation. ONVisor was designed and implemented by extending Open Network Operating System, an open‐source SDN controller. The main features of ONVisor are (1) isolated control and data plane per VN, (2) support of distributed operations, (3) extensible translators, (4) on‐platform VN application development and execution, and (5) support of heterogenous SDN data‐plane implementations. Several experiments are conducted on various test scenarios in different test environments in terms of control and data plane performance compared to nonvirtualized SDN network. The results show that ONVisor can provide VNs a little bit lower control plane performance and similar data plane performance.
Summary Network virtualization (NV) technologies have attracted a lot of attention as an essential solution for future networking infrastructure. The NV enables multiple tenants to share the same physical infrastructure and to create independent virtual networks (VNs) by decoupling the physical network in terms of topology, address, and control functions. One feasible way to realize full NV involves considering solutions based on the software‐defined networking (SDN) paradigm using its programmability. The SDN contributes many benefits to both network operations and management including programmability, agility, elasticity, and flexibility. There are several SDN‐based NV solutions; however, they suffered from a lack of scalability, high availability. Also, they have high latency between control and data plane because of proxy‐based architecture. In this thesis, we introduce a new NV platform, named Open Network Hypervisor (ONVisor). The design objectives include, among the features, (1) multitenancy, (2) scalability, (3) flexibility, (4) isolated VNs, and (5) VN federation. ONVisor was designed and implemented by extending Open Network Operating System, an open‐source SDN controller. The main features of ONVisor are (1) isolated control and data plane per VN, (2) support of distributed operations, (3) extensible translators, (4) on‐platform VN application development and execution, and (5) support of heterogenous SDN data‐plane implementations. Several experiments are conducted on various test scenarios in different test environments in terms of control and data plane performance compared to nonvirtualized SDN network. The results show that ONVisor can provide VNs a little bit lower control plane performance and similar data plane performance.
Summary Network virtualization (NV) technologies have attracted a lot of attention as an essential solution for future networking infrastructure. The NV enables multiple tenants to share the same physical infrastructure and to create independent virtual networks (VNs) by decoupling the physical network in terms of topology, address, and control functions. One feasible way to realize full NV involves considering solutions based on the software‐defined networking (SDN) paradigm using its programmability. The SDN contributes many benefits to both network operations and management including programmability, agility, elasticity, and flexibility. There are several SDN‐based NV solutions; however, they suffered from a lack of scalability, high availability. Also, they have high latency between control and data plane because of proxy‐based architecture. In this thesis, we introduce a new NV platform, named Open Network Hypervisor (ONVisor). The design objectives include, among the features, (1) multitenancy, (2) scalability, (3) flexibility, (4) isolated VNs, and (5) VN federation. ONVisor was designed and implemented by extending Open Network Operating System, an open‐source SDN controller. The main features of ONVisor are (1) isolated control and data plane per VN, (2) support of distributed operations, (3) extensible translators, (4) on‐platform VN application development and execution, and (5) support of heterogenous SDN data‐plane implementations. Several experiments are conducted on various test scenarios in different test environments in terms of control and data plane performance compared to nonvirtualized SDN network. The results show that ONVisor can provide VNs a little bit lower control plane performance and similar data plane performance.
URI
http://oasis.postech.ac.kr/handle/2014.oak/41047
DOI
10.1002/nem.2012
ISSN
1055-7148
Article Type
Article
Citation
International Journal of Network Management, vol. 28, no. 2, 2017-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

 HONG, WON KI
Dept of Computer Science & Enginrg
Read more

Views & Downloads

Browse