Open Access System for Information Sharing

Login Library

 

Article
Cited 6 time in webofscience Cited 7 time in scopus
Metadata Downloads

Temperature-Dependent Resonance Energy Transfer from Semiconductor Quantum Wells to Graphene

Title
Temperature-Dependent Resonance Energy Transfer from Semiconductor Quantum Wells to Graphene
Authors
Yu, YJKim, KSNam, JKwon, SRByun, HLee, KRyou, JHDupuis, RDKim, JAhn, GRyu, SRyu, MYKim, JS
Date Issued
Feb-2015
Publisher
AMER CHEMICAL SOC
Abstract
Resonance energy transfer (RET) has been employed for interpreting the energy interaction of graphene combined with semiconductor materials such as nanoparticles and quantum-well (QW) heterostructures. Especially, for the application of graphene as a transparent electrode for semiconductor light emitting diodes, the mechanism of exciton recombination processes such as RET in graphene-semiconductor QW heterojunctions should be understood clearly. Here, we characterized the temperature-dependent RET behaviors in graphene/semiconductor QW heterostructures. We then observed the tuning of the RET efficiency from 5% to 30% in graphene/QW heterostructures with similar to 60 nm dipoledipole coupled distance at temperatures of 300 to 10 K. This survey allows us to identify the roles of localized and free excitons in the RET process from the QWs to graphene as a function of temperature.
URI
http://oasis.postech.ac.kr/handle/2014.oak/26773
ISSN
1530-6984
Article Type
Article
Citation
NANO LETTERS, vol. 15, no. 2, page. 896 - 902, 2015-02
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

 RYU, SUNMIN
Div of Advanced Materials Science
Read more

Views & Downloads

Browse