Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Experimental and numerical investigation of deformation behavior of aluminum multicrystals during simple shear

Title
Experimental and numerical investigation of deformation behavior of aluminum multicrystals during simple shear
Authors
도영호
Date Issued
2014
Publisher
포항공과대학교
Abstract
With the rapid advances in electronics accompanying development of MEMS and NEMS technologies, the characteristic length scale of the structure is comparable to the microstructural length of the material. It is known that, in this regime, deformation behavior of the structural material is significantly dependent on the intrinsic crystallographic orientation and interactions among different grains. In this study, we have performed both experiments and CPFEM to characterize the constitutive response of f.c.c. crystalline materials. dislocation density based crystal plasticity model have been used to elucidate the deformation mechanism of the crystalline materials with limited number of grains. Aluminum Multi-crystal have been measured by EBSD. and deformed under simple shear deformation. finally compare simulation result with experimental data , e.g. DIC(surface rougheness), EBSD(crystallographic orientation), and Moire image(surface roughness), after shear deformation. Several discussions are presented for the deformation behavior of crystalline materials and predictive capabilities of the dislocation density based CPFEM. and dislocation based crystal plasticity model agree well with simple shear test result
URI
http://postech.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001677559
http://oasis.postech.ac.kr/handle/2014.oak/2208
Article Type
Thesis
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse