Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Semi-supervised Learning with Local and Global Consistency on Bi-relational Graph for Image Annotation

Title
Semi-supervised Learning with Local and Global Consistency on Bi-relational Graph for Image Annotation
Authors
Hien Duy Pham
Date Issued
2013
Publisher
포항공과대학교
Abstract
We present a semi-supervised learning algorithm based on local and global consistency, working on a bi-relational graph of images and labels. By incorporating two types of di erent entities in a single graph, we exploit the label propagation to measure the relevance score between a speci c label and unannotated images. The principle of the label propagation process is similar to many other semi-supervised learning methods, in which each node receives the information from its nearby points, and also retains its initial information. However, in our model, the neighbor concept is extended between di erent types of entities. As a results, the label correlation is captured, increasing the accuracy of image annotation. Moreover, in the propagation process, nodes from the same group are not treated equally, each has di erent relative reliability for the propagation process. We perform our method on two benchmark multi-label image data sets and gain encouraging experimental results compared to the existing work.
URI
http://postech.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001629880
http://oasis.postech.ac.kr/handle/2014.oak/2035
Article Type
Thesis
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse