Open Access System for Information Sharing

Login Library

 

Thesis
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Differential Geometry of the Lee Models

Title
Differential Geometry of the Lee Models
Authors
최영준
Date Issued
2011
Publisher
포항공과대학교
Abstract
In this dissertation, we study the differential geometry of the Lee Model. The primary result is the differential geometric characterization of the Lee Model. We first construct a special hermitian metric on the Lee model which is invariant under the action of J-biholomorphisms. And we show that the invariant metric actually coincides with the Kobayshi-Royden infinitesimal metric, thus demonstrating an uncommon phenomenon that the Kobayashi-Royden metric is J-hermitian in this case. Then we follow Cartan’s differential-form-approach and find differentialgeometric invariants, including torsion invariants, of the Lee model equipped with this J-hermitian Kobayashi-Royden metric. We also present a theorem that characterizes the Lee model by those invariants, up to J-holomorphic isometric equivalence. In the last part, We present an optimal analysis of the asymptotic behavior of the Kobayashi metric near the strongly pseudoconvex boundary points of domains in almost complex manifolds
our analysis works for all dimensions.
URI
http://postech.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000000900294
http://oasis.postech.ac.kr/handle/2014.oak/1079
Article Type
Thesis
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse