Open Access System for Information Sharing

Login Library

 

Conference
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

뉴럴 네트워크를 이용한 수중 전방 스캔 소나 이미지 영상 합성과 수중 물체 인식에의 응용

Title
뉴럴 네트워크를 이용한 수중 전방 스캔 소나 이미지 영상 합성과 수중 물체 인식에의 응용
Authors
YU, SON CHEOLMINSUNG, SUNG
Date Issued
23-Oct-2020
Publisher
한국수중·수상로봇기술연구회
Abstract
This paper proposes a method to synthesize realistic underwater sonar images using a ray tracing and generative adversarial network. When a three-dimensional model of an object is given, a ray-tracing-based sonar simulator first calculates a base sonar image of the object. Then, the generative adversarial network translates the base images to the realistic sonar images by adding degradation effects such as noise and blurred edge. We evaluated the proposed method by comparing the synthesized images and the real sonar images captured in a water tank. The sonar images synthesized by the proposed method can be used to develop and verify the other sonar-based algorithms. We also verified the utility of the proposed method by applying the synthesized sonar image to deep-learning-based underwater object detection.
URI
http://oasis.postech.ac.kr/handle/2014.oak/104294
Article Type
Conference
Citation
2020 한국수중·수상로봇기술연구회 추계학술대회, page. 4 - 6, 2020-10-23
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

유선철YU, SON CHEOL
Div. of Advanced Nuclear Enginrg
Read more

Views & Downloads

Browse