Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorBYUNGJU, KIM-
dc.contributor.authorDONGHA, LEE-
dc.contributor.authorJINOH, OH-
dc.contributor.authorHWANJO, YU-
dc.date.available2020-01-09T02:50:03Z-
dc.date.created2020-01-08-
dc.date.issued2020-04-
dc.identifier.issn0020-0255-
dc.identifier.urihttp://oasis.postech.ac.kr/handle/2014.oak/100696-
dc.description.abstractDisk-based algorithms have the ability to process large-scale data which do not fit into the memory, so they provide good scalability to a mobile device with limited memory resources. In general, the speed of disk I/O is much slower than that of memory access, the total amount of disk I/O is the most crucial factor which determines the efficiency of disk-based algorithms. This paper proposes BlockLDA, an efficient disk-based Latent Dirichlet Allocation (LDA) inference algorithm which can efficiently infer an LDA model when both of the data and model do not fit into the memory. BlockLDA manages the data and model as a set of small blocks so that it can support efficient disk I/O as well as process the LDA inference in a block-wise manner. In addition, it utilizes advanced techniques which help to minimize the amount of disk I/O, including 1) a space reduction algorithm to dynamically manage the block-wise model considering its changing sparsity and 2) a local scheduling algorithm to carefully select the next data blocks so that the number of page faults is minimized. Our experimental results demonstrate that BlockLDA shows better scalability and efficiency than its disk-based and in-memory competitors under the memory-limited environment.-
dc.languageEnglish-
dc.publisherElsevier-
dc.titleScalable Disk-Based Topic Modeling for Memory Limited Devices-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.bibliographicCitationInformation Sciences , v.516, pp.353 - 369-
dc.identifier.wosid미등재-
dc.citation.endPage369-
dc.citation.startPage353-
dc.citation.titleInformation Sciences-
dc.citation.volume516-
dc.contributor.affiliatedAuthorBYUNGJU, KIM-
dc.contributor.affiliatedAuthorDONGHA, LEE-
dc.contributor.affiliatedAuthorHWANJO, YU-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

 YU, HWANJO
Dept of Computer Science & Enginrg
Read more

Views & Downloads

Browse