Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorMoon, K.-
dc.contributor.authorDo, Y.-
dc.contributor.authorPark, H.-
dc.contributor.authorKim, J.-
dc.contributor.authorKang, H.-
dc.contributor.authorLee, G.-
dc.contributor.authorLim, J.-H.-
dc.contributor.authorKim, J.-
dc.contributor.authorHan, H.-
dc.date.available2019-12-10T12:30:17Z-
dc.date.created2019-12-01-
dc.date.issued2019-11-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://oasis.postech.ac.kr/handle/2014.oak/100482-
dc.description.abstractTerahertz near-field microscopy (THz-NFM) could locally probe low-energy molecular vibration dynamics below diffraction limits, showing promise to decipher intermolecular interactions of biomolecules and quantum matters with unique THz vibrational fingerprints. However, its realization has been impeded by low spatial and spectral resolutions and lack of theoretical models to quantitatively analyze near-field imaging. Here, we show that THz scattering-type scanning near-field optical microscopy (THz s-SNOM) with a theoretical model can quantitatively measure and image such low-energy molecular interactions, permitting computed spectroscopic near-field mapping of THz molecular resonance spectra. Using crystalline-lactose stereo-isomer (anomer) mixtures (i.e., alpha-lactose (>= 95%, w/w) and beta-lactose (<= 4%, w/w)), THz s-SNOM resolved local intermolecular vibrations of both anomers with enhanced spatial and spectral resolutions, yielding strong resonances to decipher conformational fingerprint of the trace beta-anomer impurity. Its estimated sensitivity was similar to 0.147 attomoles in similar to 8 x 10(-4) mu m(3) interaction volume. Our THz s-SNOM platform offers a new path for ultrasensitive molecular fingerprinting of complex mixtures of biomolecules or organic crystals with markedly enhanced spatio-spectral resolutions. This could open up significant possibilities of THz technology in many fields, including biology, chemistry and condensed matter physics as well as semiconductor industries where accurate quantitative mappings of trace isomer impurities are critical but still challenging.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleComputed terahertz near-field mapping of molecular resonances of lactose stereo-isomer impurities with sub-attomole sensitivity-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.9-
dc.identifier.wosid000496716900001-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume9-
dc.contributor.affiliatedAuthorLee, G.-
dc.contributor.affiliatedAuthorLim, J.-H.-
dc.contributor.affiliatedAuthorHan, H.-
dc.identifier.scopusid2-s2.0-85075114880-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

한해욱HAN, HAEWOOK
Dept of Electrical Enginrg
Read more

Views & Downloads

Browse