Open Access System for Information Sharing

Login Library

 

Conference
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Energy transport in atmospheric-pressure plasmas driven by pulsed microwave

Title
Energy transport in atmospheric-pressure plasmas driven by pulsed microwave
Authors
NAM, WOOJINJEONG, SEOK YONGLEE, JAE KOOYUN, GUNSU
Date Issued
30-Oct-2019
Publisher
APS Division of Atomic, Molecular, and Optical Physics (DAMOP)
Abstract
Plasma state can persist after the removal of external driving power via the release of the energy stored in the plasma particles. The energy release contributes to the generation of excited species and subsequent radiative de-excitation, which is well known phenomena called afterglow in low-pressure plasmas. We have studied the energy transport in atmospheric-pressure argon plasma generated by microwave resonator with the focus on the temporal dynamics of the afterglow in pulse operation. Substantial afterglow in both continuum and atomic line emissions has been observed during the pulse-off time because the recombination rate of argon ions increases rapidly with the decrease of electron temperature. Compared to continuous wave (CW) operation, the time-averaged atomic line emission intensities are enhanced in the pulsed operation with high repetition rate (>100 kHz, 50% duty). A global simulation incorporating the pulse power coupling shows that the impedance mismatch between the plasma and the resonator can be minimized in the pulse operation compared to CW operation. An optimization scheme for pulse operation has been deduced and can be utilized to maximize the power coupling efficiency and the generation of reactive species in plasma source devices of resonator type.
URI
http://oasis.postech.ac.kr/handle/2014.oak/100006
Article Type
Conference
Citation
The 72nd Annual Gaseous Electronics Conference (GEC), 2019-10-30
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

 YUN, GUNSU
Div. of Advanced Nuclear Enginrg
Read more

Views & Downloads

Browse